10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = clx subject to Ax = 0 and x € A.

» Here A= {x e R" | elx =1,x = 0} with el = (1,...

denotes the standard simplex in R™.

Further assumptions:

1. Ais an m X n-matrix with rank m.

2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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10 Karmarkars Algorithm
Suppose you start with max{ctx | Ax = b;x = 0}.

>

Multiply ¢ by —1 and do a minimization. = minimization
problem

We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

Add a new variable pair xy, x}, (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

Add —(>.; x;)b; = —bj to every constraint. = vector b is 0

If A does not have full row rank we can delete constraints
(or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.



10 Karmarkars Algorithm

The algorithm computes strictly feasible interior points
x(0 =2 xW x2) . with

ctx® < 270ty (0)
For k = ®(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can
“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:
1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible
region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). Xpew is the point you reached.

3. Do a backtransformation to transform X into your new point

Xnew-
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The Transformation

Let Y = diag(x) the diagonal matrix with entries X on the

diagonal.
Define _—
Y 'x
Fy:ix—» ———— .
* elY-1x
The inverse function is
I
x X — (v
etYx

Note that X > 0 in every coordinate. Therefore the above is well
defined.
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Properties

F;l really is the inverse of Fx:

Y71 YXx %
— ~ Ly x ~
Fe(Fl(0) =~ = S0 =%
e Y vz

because x € A.

Note that in particular every X € A has a preimage (Urbild) under
Fx.
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Properties

X is mapped to e/n
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Properties

A unit vectors ¢; is mapped to itself:

Fale)) = Y~le;  (0,...,0,1/%0,...,0)! W
PV ety-le;  el(0,...,0,1/%,0,...,00t "
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Properties

All nodes of the simplex are mapped to the simplex:

t t
V-1x (".—1,...,—’.‘") (X_—l,...,x.—")
X1 Xn X1 Xn
Fx(x) = - = [ X
etY-1x et()ﬂ Xn) Zl?
X ®n i

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

eA

231



The Transformation

Easy to check:

v

F,;] really is the inverse of Fx.
» X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.

v
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10 Karmarkars Algorithm

We have the problem

min{cix | Ax = 0; x € A}
=min{c'Fz1 (%) | AFz1(%) = 0; Fz1 (%) € A}
=min{c'Fz}(%) | AFz1(X) = 0; X € A}
=min{ iY)f | AY X

elYx elYx

O;XEA}

Since the optimum solution is 0 this problem is the same as
min{é'% | AXx = 0,% € A}
with ¢ = Yic = Ycand A = AY.

___________________
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Tt

We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.

» Apply Fx, and solve

min{éix | Ax = 0; x € A}

> The feasible point is moved to the center.
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10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b(5r) = frewie- 0]

We are looking for the largest radius » such that

B(%,r)m{xletle}gA.
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10 Karmarkars Algorithm

This holds for » = Hf — (e —e1)5,—7ll. (r is the distance between
the center e/n and the center of the (n —1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

Jnmn-1)"

Now we consider the problem

This gives r =

min{éix | Ax = 0,x € B(e/n,r) N A}

This problem is easy to solve!!!

_____________________________________
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The Simplex

EADS Il
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints AX = 0 or the
constraint X € A.

Therefore we first project ¢ on the nullspace of
A
B = ot

P=1-BY(BB") 1B

We use
Then

is the required projection.
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10 Karmarkars Algorithm

We get the new point

forp < r.

Choose p = ar with o = 1/4.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

239



Iteration of Karmarkars Algorithm

» Current solution x. Y := diag(x1,...,X5).
Y-1lx
ety-1x-

» Transform problem via Fx(x) =
Let ¢ = Yc,and A = AY.

» Compute
d = (I —-BYBBY) 'B)¢ ,
A
where B = ( t).
e
> Set R
e = & — p-2%
new n ||d"|| ]

with p = v withcx=1/4andr =1/yn(n—1).
» Compute Xnew = Fz ' (Xnew).
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Lemma 2
The new point Xnew in the transformed space is the point that
minimizes the cost ¢'X among all feasible points in B(%, p).
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Proof: Let Z be another feasible point in B(%, p).
As AZ =0, ARpew = 0, €12 = 1, el Xpew = 1 we have
B(Xpew —2) =0 .
Further,
(6 —d)t = (¢-pe)

= (B'(BB")™'B&)!

— ¢tBY(BBY)"!B
Hence, we get

(€ = d)! (Rnew = 2) = 0 or & (Rnew — 2) = d" (Rnew — 2)

which means that the cost-difference between Xpew and Z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.



But

LAY SYESPI S I SO
[ Idl \n " dl i

e A .
as ,; — z is a vector of length at most p.

This gives (i(fcnew — 2) < 0 and therefore ¢Xnew < CZ.
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In order to measure the progress of the algorithm we introduce
a potential function f:

t
£ = S In(<) = ninetx) - 3 In(x;)) -

J J

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nln(c'x)) but it penalizes us for choosing x; values
very small (by the term — > ;In(x;); note that —In(x;) is
always positive).
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For a point Z in the transformed space we use the potential
function

f(2):= f(F 1(z))—f( A)—f(YZ)
= >.In( CYZ _Zl (—)—Zlnxj
- ;

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by ¢.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

. e
f(Xnew) Sf(ﬁ) -0,
where 6 is a constant.

This gives
S (Xnew) < f(x) -6 .
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

A A e
f(2) Sf(a)—ﬁ
with 6 = In(1 + ).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where ¢tx
is minimized. (Note that in contrast Xpew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* # Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(3,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1—2\)£+}\z*
n

for some positive A < 1.
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Hence, 0
flz=01- /\)étﬁ + Aétz*

The optimum cost (at z*) is zero.

Therefore,
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The improvement in the potential function is
~ e Ate
f(S) - fz) = Zlm ) - Zl (
n o
t
- Zln( Aty
= %h’l(mzj)

=Zmﬁ%%«1—m%+A4n

=\~L

_Zmu+ —z)
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We can use the fact that for non-negative s;

Ziln(l +8) =In(1 +>;s:)

=In (1 + Zsl + gkl sl) >In(1 + X5 5;)

This gives
~ e A~
—) = f(z)=)> In(1+ z¥
fGp-F@=Tmas ez
A
> In(1 +
( - /\)

{Suppose true for 51,51 Then
L
L S +s) = In(L+ 35 s) + In(1+ 5p) _1n((1+zk Lso(1 +5k)>
! i=1
i
1
1
1



In order to get further we need a bound on A:
ar =p =|z-e/n| =[|A(z* —e¢/n)|]| < AR

Here R is the radius of the ball around % that contains the whole
simplex.

R=+(n-1)/n. Since r =1/,/m-1)n we have R/ =n — 1 and

Aza%za/(n—l)

Then

1+
"7

This gives the lemma.
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Lemma 4
If we choose x = 1/4 and n > 4 in Karmarkars algorithm the
point Xnew satisfies

o e
J (Xnew) Sf(ﬁ) -0

with 6 = 1/10.
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Proof:

Define

This is the change in the cost part of the potential function when
going from the center % to the point X in the transformed space.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

255



Similar, the penalty when going from % to w increases by
Xj
1

n

h(%) = pen(%) — pen(*) = = 'In
J

where pen(v) = - > ;In(v;).
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We want to derive a lower bound on

A e P 5 E B

f(ﬁ) — f(Xnew) = [f(n) f(2)]
+ h(z)
*h(f(ncw)

+[g9(2) — g(Xnew) ]

where z is the point in the ball where f achieves its minimum.
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We have

[f(%) ~ (@)1=l + )

by the previous lemma.

We have
[g(2) —g(Xnew)] =0

since Xpew is the point with minimum cost in the ball, and g is
monotonically increasing with cost.
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We show that the change h(w) in penalty when going from e/n
to w fulfills

BZ
lh(w)| < m
where 8 = nor and w is some point in the ball B(%, or).
Hence,
F(E) — FlEnew) 201 4 00) — 2
n) e = YTa-p
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Lemma 5
For|x|<B <1

2
X
|IIn(1 +x) — x| <
2(1-B)
For x| <1 T TToTooTomTmnTenTen
_y X _ X X x?
1n(1+x)_gl( 1) X5t T

1
1
1
1
1
1
I
:This gives
1
1
1
1
1
1
1
1
1

X2  x3 x4 x2 X3 a4
Inl+x)—-x|< |-+ -—-——+...| = |+ +—F— +
M 28 =28 2 "3 3 2 "3
2 2
& 0 1 2 X
S xTHEx XS4 = .
2| ’ 2(1—IxD)
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This gives for w € B(;, p)

|h(w)]

Zln l/n

3 I/n+ (wj—
a %ln( 1/n
Z [ln (1 +n(w; — 1/n)>
J

n?(wj—1/n)?
= Z 2(1 — anr)

J
(anr)?
—2(1 — anr)
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The decrease in potential is therefore at least

52
1-8

In(1 + ) —

with B = nar = /"5

It can be shown that this is at least % form >4 and = 1/4.
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Let x*) be the current point after the k-th iteration, and let
) = €
L.

Then f(x®)) < f(e/n) — k/10.
This gives

te
n

(k)
nin &% <Zm*“ Zm%—mm
j
< nlnn —k/10

Choosing k = 10n(f + Inn) with £ = ©(L) we get

ctx k)

<el <2t
n

Hence, ©®(nL) iterations are sufficient. One iteration can be
performed in time O (n3).
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