10 Karmarkars Algorithm

We want to solve the following linear program:
» minv = clx subject to Ax = 0 and x € A.

» Here A= {x e R" |elx =1,x = 0} withel = (1,...,1)
denotes the standard simplex in R™.

Further assumptions:
1. Ais an m X n-matrix with rank m.
2. Ae =0, i.e., the center of the simplex is feasible.

3. The optimum solution is 0.
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10 Karmarkars Algorithm
Suppose you start with max{ci!x | Ax = b;x = 0}.

» Multiply ¢ by —1 and do a minimization. = minimization
problem

» We can check for feasibility by using the two phase
algorithm. = can assume that LP is feasible.

» Compute the dual; pack primal and dual into one LP and
minimize the duality gap. = optimum is 0

» Add a new variable pair xy, x;, (both restricted to be
positive) and the constraint > ; x; = 1. = solution in simplex

» Add —(>; xi)b; = —b; to every constraint. = vector b is 0

» |f A does not have full row rank we can delete constraints
(or conclude that the LP is infeasible).
= A has full row rank

We still need to make e/n feasible.
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The algorithm computes strictly feasible interior points
x(0 =2 xM x@ . with

clx®) < 2-0) Ly (0)

For k = ©(L). A point x is strictly feasible if x > 0.

If my objective value is close enough to 0 (the optimum!!) | can

“snap” to an optimum vertex.
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10 Karmarkars Algorithm

Iteration:

1. Distort the problem by mapping the simplex onto itself so
that the current point X moves to the center.

2. Project the optimization direction ¢ onto the feasible
region. Determine a distance to travel along this direction
such that you do not leave the simplex (and you do not
touch the border). Xnew is the point you reached.

3. Do a backtransformation to transform X into your new point

Xnew-
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The Transformation

Let Y = diag(x) the diagonal matrix with entries x on the

diagonal.
Define _—
Y 'x
Frix eltY-1lx
The inverse function is
Yx
Fzl:x » =2
X etyx

Note that X > O in every coordinate. Therefore the above is well
defined.
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Properties

F;l really is the inverse of Fi:

y-1 YX %
1/~ Ly ~
Fx(F (%) = ———=5% f Tl oz =X
ety etYx

because X € A.

Note that in particular every X € A has a preimage (Urbild) under

Properties

X is mapped to e/n
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Fx.
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Properties
A unit vectors ¢; is mapped to itself:
Y-le; 0,...,0,1/%,0,...,0)t
Fr(ei) = —=—1.- =~ . r=ei
eltY-le; e!(0,...,0,1/x40,...,0)
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Properties

All nodes of the simplex are mapped to the simplex:

t t
_ X1 Xn X1 Xn
Y*lx <7,,7> (7,,7)
FX(X): | — 1 n t: 1 Xin EA
elY-lx et(X,..., ) 2i%
X0 Xn i
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The Transformation

Easy to check:

v

F;! really is the inverse of Fx.

> X is mapped to e/n.

» A unit vectors ¢; is mapped to itself.
» All nodes of the simplex are mapped to the simplex.
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10 Karmarkars Algorithm

We have the problem

min{cix | Ax = 0; x € A}
=min{c'Fz1 (%) | AFz1 (%) = 0; Fz1 (%) € A}
=min{c'F1 (%) | AFz1(%) = 0; X € A}

_ mi {ct}_’fc AYX

S =0k EA
etYx etYx }

Since the optimum solution is O this problem is the same as
min{é'x | AX = 0,% € A}
with ¢ = Yic = Ycand A = AY.

___________________

r
1
L e e e e e e e e e e - -

m EADS Il 10 Karmarkars Algorithm
©Harald Racke 233

We still need to make e/n feasible.

» We know that our LP is feasible. Let X be a feasible point.
» Apply Fg, and solve

min{éfx | Ax = 0; x € A}

» The feasible point is moved to the center.
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10 Karmarkars Algorithm

When computing Xpew We do not want to leave the simplex or
touch its boundary (why?).

For this we compute the radius of a ball that completely lies in
the simplex.

b(3) - fremi -]

We are looking for the largest radius * such that

B(%,T)ﬂ{xletle}gA.
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10 Karmarkars Algorithm

This holds for » = II% — (e — el)ﬁll. (r is the distance between
the center e/n and the center of the (n — 1)-dimensional simplex
obtained by intersecting a side (x; = 0) of the unit cube with A.)

1

This gives ¥ = NS

Now we consider the problem
min{éfx | Ax = 0,x € B(e/n,r) N A}

This problem is easy to solve!!!
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The Simplex

X3
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10 Karmarkars Algorithm
Ideally we would like to go in direction of —¢ (starting from the
center of the simplex).

However, doing this may violate constraints AX = 0 or the
constraint X € A.

Therefore we first project ¢ on the nullspace of
5 A
=t

P=1-BYBBH) B

We use
Then

is the required projection.
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10 Karmarkars Algorithm

We get the new point

forp <.

Choose p = or with o = 1/4.
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Iteration of Karmarkars Algorithm

» Current solution x. Y := diag(x1,...,Xn).
Y-lx
ely-1x"

» Transform problem via F¢(x) =
Let ¢ = Yc,and A = AY.

» Compute
d = (I - BY(BBY)"'B)¢
A
where B = < t).
e
> Set R
Rpew = & = p2
new n ||d"|| ]

with p = axr withx=1/4andr =1/yn(n-1).
> Compute )—Cnew = F;l()%new)
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Lemma 2
The new point Xnew in the transformed space is the point that
minimizes the cost ¢'X among all feasible points in B(%, p).
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Proof: Let Z be another feasible point in B(%,p).
As A2 =0, AXpew = 0, €12 =1, et Xpew = 1 we have
B(Xpew —2) =0 .
Further,
(e -d)t=(-Po)

= (BY(BB")"'B¢)!

— ¢tBt(BBY)" !B
Hence, we get

(€ = d)! (Snew — 2) = 0 0r & (Xnew — 2) = d' (Xnew — 2)

which means that the cost-difference between X,ew and Z is the
same measured w.r.t. the cost-vector ¢ or the projected
cost-vector d.




But
dy ldil \n " ydl Id| \n

as % — Z is a vector of length at most p.

This gives A (Xnew — 2) < 0 and therefore ¢Xpeyw < ¢2.
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In order to measure the progress of the algorithm we introduce
a potential function f:

ctx
fx) = Zln(T) =nln(c'x) - > In(x;)
j J j

» The function f is invariant to scaling (i.e., f(kx) = f(x)).

» The potential function essentially measures cost (note the
term nIn(c’x)) but it penalizes us for choosing x; values
very small (by the term — Zj In(x;); note that —1In(x;) is
always positive).
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For a point Z in the transformed space we use the potential
function

f(): ﬂFlu»—f( A>—fWa
-Sn(s) =S H—Zlnxj

J

Observation:
This means the potential of a point in the transformed space is
simply the potential of its pre-image under F.

Note that if we are interested in potential-change we can ignore
the additive term above. Then f and f have the same form; only
c is replaced by ¢.
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The basic idea is to show that one iteration of Karmarkar results
in a constant decrease of f. This means

PN . e
S (Xpew) < f(%) -0
where ¢ is a constant.

This gives
S (Xnew) < f(x)—06
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Lemma 3
There is a feasible point z (i.e., Az = 0) in B(%, p) N A that has

N P
f(2) Sf(ﬁ)fcs
with 6 = In(1 + ).

Note that this shows the existence of a good point within the
ball. In general it will be difficult to find this point.
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Let z* be the feasible point in the transformed space where ¢!x
is minimized. (Note that in contrast Xnew is the point in the
intersection of the feasible region and B(%,p) that minimizes
this function; in general z* + Xpew)

z* must lie at the boundary of the simplex. This means
z* ¢ B(3,p).

The point z we want to use lies farthest in the direction from %
to z*, namely

z=(1-0& 1 az*
n

for some positive A < 1.
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Hence, 0
flz=01- /\)étﬁ + Aétz*

The optimum cost (at z*) is zero.

Therefore,
At e
C n _ 1
flz 1-A
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The improvement in the potential function is

~ N Ate
FE) -f@) = Zln< ") - zm

n

te
- Zln( Atn ’ Tl
n
=%1n(ﬁzj)

- Zln(%((l - A)% +Az¥))
J

*
zj)

:%1n(1+1_)\
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We can use the fact that for non-negative s;

Ziln(l +5) =In(1 + 3; ;)

This gives

~ e ~
f(ﬁ)—f(Z) =

k

S n(1 +5;) = In(1 + S5 5;) +In(1 + 5) =In ((1 + 3k lsha+ sk))
i=1

=In (1 +> s+ sk si) >In(l+3;s;)
i

In order to get further we need a bound on A:
ar =p = |z—e¢/n| =[[A(z* —¢/n)|| < AR

Here R is the radius of the ball around % that contains the whole
simplex.
R =+(n-1)/n. Since v =1/.,/mn-1)n we have R/r =n —1 and

Aza%za/(n—l)

Then

A no
1+ >1+ >1+
1—)\ n-o-1 «

This gives the lemma.
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Lemma 4
If we choose «x = 1/4 and n = 4 in Karmarkars algorithm the
point Xnew satisfies

A A ~ e
f(xnew)ﬁf(ﬁ)_(s

with 6 = 1/10.
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Proof:

Define

I
S
5

g(x)

Il
2
=3
=
2

I
=3
o

This is the change in the cost part of the potential function when
going from the center % to the point X in the transformed space.
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Similar, the penalty when going from £ to w increases by

n
- . e X
h(X) = pen(X) — pen(a) =->h~!
J n
where pen(v) = - > ;In(v;).
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We want to derive a lower bound on

~ e ~ N _ ~ g _ ~

f(a) — f (Xnew) = [f(n) f(2)]
+h(z)
_h()%l’leVV)

+[g(z2) — g(Xnew) ]

where z is the point in the ball where f achieves its minimum.
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We have ) )
[f(%) ~f()12In( + )

by the previous lemma.

We have
[g(z) — g(Xnew)] =0

since Xpew is the point with minimum cost in the ball, and g is
monotonically increasing with cost.
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We show that the change h(w) in penalty when going from e/n
to w fulfills
32

2(1-8)

where f = nor and w is some point in the ball B(%, xr).

lh(w)| <

Hence,
BZ
1-p8)

f(%) _f(f(new) =In(1 + «) —
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Lemma 5
For x| < B <1

X2
[In(1 +x) — x| <
2(1-B)
Forlxl<1
1
1 i 2 3 4
_ i1 X' X b X
: 1n(1+X)7Z(71)l+ T7X77+?7T+”'
| i1
1
1
1 This gives
1
1
1 3 4 2 3 4
i [In(1 +x) — x| < > %—%Jr. < %+—+—+
1
1 2 2
! < x0 4 xl 4 x2 4 =2 .
. 7 X0t e | = 2=
L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = =
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259
This gives for w € B(;, p)
_ Wi
lh(w)| = %ml/n
1/ ( 1/n) 1
B n+(wj—-1/n)\ 1
- S () (- 2]
- [m <1 Fn(w; - 1/n)) —n(w; - 1/n)]
J
5 n?(wj—1/n)?
B 2(1 — anr)
(omr)?
— 2(1 — anr)
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The decrease in potential is therefore at least

BZ
1-B

In(1 + &) —

with = nor = /5,77

It can be shown that this is at least 11—0 form>4and x =1/4.
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Let xK) be the current point after the k-th iteration, and let
%0 = &
n

Then f(x®)) < f(e/n) — k/10.
This gives

t (k) 1
nin< ):e < Zln)’(}k) - Zln— - k/10

<nlnn-k/10

Choosing k = 10n (¥ + Inn) with £ = (L) we get

Hence, ®(nL) iterations are sufficient. One iteration can be
performed in time O (n3).
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