Facility Location

Given a set *L* of (possible) locations for placing facilities and a set *D* of customers together with cost functions $s: D \times L \to \mathbb{R}^+$ and $o: L \to \mathbb{R}^+$ find a set of facility locations *F* together with an assignment $\phi: D \to F$ of customers to open facilities such that

$$\sum_{f\in F} o(f) + \sum_c s(c,\phi(c))$$

is minimized.

In the metric facility location problem we have

$$s(c, f) \le s(c, f') + s(c', f) + s(c', f')$$
.

EADS II © Harald Räcke

476

Facility Location

Integer Program

min		$\sum_{i\in F} f_i y_i + \sum_{i\in F} \sum_{j\in D} c_{ij} x_{ij}$		
s.t.	$\forall j \in D$	$\sum_{i\in F} x_{ij}$	=	1
	$\forall i \in F, j \in D$	χ_{ij}	\leq	${\mathcal{Y}}_i$
	$\forall i \in F, j \in D$	χ_{ij}	\in	$\{0, 1\}$
	$\forall i \in F$	${\mathcal Y}i$	\in	$\{0, 1\}$

As usual we get an LP by relaxing the integrality constraints.

EADS II © Harald Räcke 22 Facility Location

EADS II © Harald Räcke 477

Lemma 3

If (x^*, y^*) is an optimal solution to the facility location LP and (v^*, w^*) is an optimal dual solution, then $x_{ij}^* > 0$ implies $c_{ij} \le v_j^*$.

Follows from slackness conditions.

50000	EADS II	
	EADS II ©Harald Räcke	

22 Facility Location

480

Problem: Facility cost may be huge!

Suppose we can partition a subset $F' \subseteq F$ of facilities into neighbour sets of some clients. I.e.

 $F' = \biguplus_k N(j_k)$

where j_1, j_2, \ldots form a subset of the clients.

EADS II	
© Harald	Räcke

22 Facility Location

482

Suppose we open set $S \subseteq F$ of facilities s.t. for all clients we have $S \cap N(j) \neq \emptyset$.

Then every client j has a facility i s.t. assignment cost for this client is at most $c_{ij} \leq v_i^*$.

Hence, the total assignment cost is

 $\sum_{j} c_{i_j j} \leq \sum_{j} v_j^* \leq \mathrm{OPT}$,

where i_j is the facility that client j is assigned to.

EADS II © Harald Räcke 22 Facility Location

Now in each set $N(j_k)$ we open the cheapest facility. Call it f_{i_k} .

We have

$$f_{i_k} = f_{i_k} \sum_{i \in N(j_k)} x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i x_{ij_k}^* \le \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* .$$

Summing over all *k* gives

$$\sum_{k} f_{i_k} \le \sum_{k} \sum_{i \in N(j_k)} f_i \mathcal{Y}_i^* = \sum_{i \in F'} f_i \mathcal{Y}_i^* \le \sum_{i \in F} f_i \mathcal{Y}_i^*$$

Facility cost is at most the facility cost in an optimum solution.

EADS II © Harald Räcke 22 Facility Location

481

Problem: so far clients j_1, j_2, \ldots have a neighboring facility. What about the others?

Definition 4

Let $N^2(j)$ denote all neighboring clients of the neighboring facilities of client *j*.

Note that N(j) is a set of facilities while $N^2(j)$ is a set of clients.

EADS II © Harald Räcke EADS II

22 Facility Location

484

Facility cost of this algorithm is at most OPT because the sets $N(j_k)$ are disjoint.

Total assignment cost:

- Fix k; set $j = j_k$ and $i = i_k$. We know that $c_{ij} \le v_i^*$.
- Let $\ell \in N^2(i)$ and h (one of) its neighbour(s) in N(i).

 $c_{i\ell} \leq c_{ij} + c_{hj} + c_{h\ell} \leq v_i^* + v_i^* + v_{\ell}^* \leq 3v_{\ell}^*$

Summing this over all facilities gives that the total assignment cost is at most $3 \cdot OPT$. Hence, we get a 4-approximation.

Algorithm 1 FacilityLocation 1: $C \leftarrow D//$ unassigned clients 2: $k \leftarrow 0$ 3: while $C \neq 0$ do $k \leftarrow k + 1$ 4: choose $j_k \in C$ that minimizes v_i^* 5: choose $i_k \in N(j_k)$ as cheapest facility 6: assign j_k and all unassigned clients in $N^2(j_k)$ to i_k 7: $C \leftarrow C - \{j_k\} - N^2(j_k)$ 8:

EADS II © Harald Räcke 22 Facility Location 485

486

Observation:

- Suppose when choosing a client j_k, instead of opening the cheapest facility in its neighborhood we choose a random facility according to x^{*}_{ijk}.
- Then we incur connection cost

$$\sum_i c_{ij_k} x^*_{ij_k}$$

for client j_k . (In the previous algorithm we estimated this by $v_{j_k}^*$).

Define

$$C_j^* = \sum_i c_{ij} x_{ij}^*$$

to be the connection cost for client j.

٦n	ПГ	٦٢	1	EADS II © Harald	
	Ш			© Harald	Räcke

22 Facility Location

1: C	$\leftarrow D//$ unassigned clients
2: k	<i>←</i> 0
3: W	hile $C \neq 0$ do
4:	$k \leftarrow k + 1$
5:	choose $j_k \in C$ that minimizes $v_i^* + C_i^*$
6:	choose $i_k \in N(j_k)$ according to probability x_{ij_k} .
7:	assign j_k and all unassigned clients in $N^2(j_k)$ to i_k
8:	$C \leftarrow C - \{j_k\} - N^2(j_k)$

EADS II © Harald Räcke

22 Facility Location

490

488

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of some j_k). (recall that neighborhoods of different $j'_k s$ are disjoint).

We open facility i with probability $x_{ij_k} \leq y_i$ (in case it is in some neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

EADS II © Harald Räcke 22 Facility Location

489

Total assignment cost:

- Fix k; set $j = j_k$.
- Let $\ell \in N^2(j)$ and h (one of) its neighbour(s) in N(j).
- \blacktriangleright If we assign a client ℓ to the same facility as i we pay at most

$$\sum_{i} c_{ij} x_{ij_k}^* + c_{hj} + c_{h\ell} \le C_j^* + v_j^* + v_\ell^* \le C_\ell^* + 2v_\ell^*$$

Summing this over all clients gives that the total assignment cost is at most

$$\sum_{j} C_{j}^{*} + \sum_{j} 2v_{j}^{*} \le \sum_{j} C_{j}^{*} + 2\text{OPT}$$

Hence, it is at most 2OPT plus the total assignment cost in an optimum solution.

Adding the facility cost gives a 3-approximation.