Duality

How do we get an upper bound to a maximization LP?

 $\max 13a + 23b$ s.t. $5a + 15b \le 480$ $4a + 4b \le 160$ $35a + 20b \le 1190$ $a,b \geq 0$

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ii} \ge c_i$ then $\sum_i y_i b_i$ will be an upper bound.

EADS II © Harald Räcke

74

Duality

Lemma 3

The dual of the dual problem is the primal problem.

Proof:

EADS II

UIIII © Harald Räcke

- $w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$
- $w = -\max\{-b^T v \mid -A^T v \le -c, v \ge 0\}$

The dual problem is

- ► $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
- $\blacktriangleright z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Duality

Definition 2

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

EADS II © Harald Räcke

5.1 Weak Duality

5.1 Weak Duality

Weak Duality

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

$$c^T \hat{x} \le \hat{y}^T A \hat{x} \le b^T \hat{y}$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T y = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

EADS II © Harald Räcke 5.1 Weak Duality

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

 $z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{b^T y \mid A^T y \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

EADS II ©Harald Räcke 5.2 Simplex and Duality

80

78

The following linear programs form a primal dual pair:

 $z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{b^T y \mid A^T y \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

EADS II © Harald Räcke

5.1 Weak Duality

79

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0\}$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

$$= \min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

$$= \min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

$$= \min\left\{b^T y' \mid A^T y' \ge c\right\}$$

EADS II © Harald Räcke 5.2 Simplex and Duality

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

 $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$

This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$

 $y^* = (A_B^{-1})^T c_B$ is solution to the dual $\min\{b^T y | A^T y \ge c\}$.

$$b^{T} y^{*} = (Ax^{*})^{T} y^{*} = (A_{B}x_{B}^{*})^{T} y^{*}$$

= $(A_{B}x_{B}^{*})^{T} (A_{B}^{-1})^{T} c_{B} = (x_{B}^{*})^{T} A_{B}^{T} (A_{B}^{-1})^{T} c_{B}$
= $c^{T}x^{*}$

5.2 Simplex and Duality

Hence, the solution is optimal.

EADS II © Harald Räcke

82

84

Strong Duality

Theorem 6 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Lemma 8 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

Proof of the Projection Lemma (continued)

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

= $\|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*)$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

EADS II © Harald Räcke

Theorem 9 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha;$ $a^T x \ge \alpha$ for all $x \in X$)

	5.4 Strong Duality B	
U LU © Harald Räcke		90

Lemma 10 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

 $y^T A x \ge \alpha$ for all $x \ge 0$. Hence, $y^T A \ge 0$ as we can choose x arbitrarily large.

EADS II © Harald Räcke 5.4 Strong Duality B

Lemma 11 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

EADS II © Harald Räcke 5.4 Strong Duality B

94

96

Proof of Strong Duality

 $z \leq w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$				$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$		
s.t.	Ax	\leq	b	s.t. $A^T y - c v$	\geq	0
	$Ax \\ -c^T x$	\leq	$-\alpha$	$b^T y - \alpha v$	<	0
	x	\geq	0	<i>y</i> , <i>v</i>	\geq	0

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

EADS II 5.4 Strong Duality B |∐|||| © Harald Räcke

Proof of Strong Duality

 $P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

 $D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

Theorem 12 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

	z = w.	
EADS II © Harald Räcke	5.4 Strong Duality B	95

Proof of Stro					
	$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$ s.t.	• T			
	s.t.	$A^{T} \mathcal{Y} - \mathcal{V}$	≥	0	
		$b^T y - \alpha v$	<	0	
		<i>y</i> , <i>v</i>	\geq	0	
If the solution	n y , v has $v = 0$ w	ve have that			
	$\exists v \in \mathbb{R}^m$				
	s.t.	$A^T y \ge 0$			

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

 $b^T y < 0$ $\gamma \ge 0$

```
EADS II
© Harald Räcke
```

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

EADS II © Harald Räcke 5.4 Strong Duality B

Complementary Slackness

Lemma 14

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

1. If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.

- **2.** If the *j*-th constraint in D is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

```
EADS II
© Harald Räcke
```

100

98

Fundamental Questions

Definition 13 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter α . Suppose that $\alpha > \operatorname{opt}(P)$.
- > We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

```
EADS II
© Harald Räcke
```

5.4 Strong Duality B

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \le y^{*T} A x^* \le b^T y^*$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

 $\sum_{j} (y^T A - c^T)_j x_j^* = 0$

From the constraint of the dual it follows that $y^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

EADS II © Harald Räcke

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

```
EADS II
© Harald Räcke
```

5.5 Interpretation of Dual Variables

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
EADS II ©Harald Räcke	5.5 Interpretation of Dual Variables	103

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Soloo EADS II	5.5 Interpretation of Dual Variables	
© Harald Räcke		106

Flows

Definition 16

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

החוחר	EADS II © Harald Räcke
	© Harald Räcke

5.5 Interpretation of Dual Variables

108

Flows

Definition 15

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{XY} \leq c_{XY} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

הר	пп	EADS II © Harald Räcke
1111		© Harald Räcke

5.5 Interpretation of Dual Variables

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

EADS II |||||| © Harald Räcke

112

LP-Formu	lation	of	Maxflow
LF-FOIIIIU	ιατισπ	UI	Maxiluw

	min		$\sum_{(xy)} c_{xy} \ell_{xy}$				
	s.t.	$f_{xy}(x, y \neq s, t)$:	$1\ell_{xy}-1p_x+1p_y \ge$	0			
		$f_{sy}(y \neq s,t)$:	$1\ell_{sy} - p_s + 1p_y \ge$	0			
		f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x+p_s \geq$	0			
		$f_{ty} (y \neq s, t)$:	$1\ell_{ty} - p_t + 1p_y \ge$	0			
		f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x+p_t \geq$	0			
		f_{st} :	$1\ell_{st}-p_s+p_t \geq$	0			
		f_{ts} :	$1\ell_{ts}-p_t+p_s \geq$	0			
			$\ell_{xy} \geq$	0			
with $p_t = 0$ and $p_s = 1$.							
EADS II		5.5 Interpretation	of Dual Variables				
UUU©Harald Rä	cke				111		

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

Flows

Definition 17

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{XY} \leq c_{XY} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

EADS II © Harald Räcke 5.6 Computing Duals

max 2	$\sum_{z} f_{sz} - \sum_{z} f_{zs}$
s.t. $\forall (z, w) \in V \times V$	$f_{zw} \leq c_{zw}$
$\forall w \neq s, t \sum_{k=1}^{\infty} dk = \sum_{k=1}^{\infty} dk = k $	$f_{zw} - \sum_{z} f_{wz} = 0 \qquad 1$
	$f_{zw} \geq 0$
min	$\sum_{(xy)} c_{xy} \ell_{xy}$
	$\frac{\mathcal{L}(xy)}{\mathcal{L}(xy)} \frac{\mathcal{L}(xy)}{\mathcal{L}(xy)} \frac{\mathcal{L}(xy)}{\mathcal{L}(xy)} \geq 0$
	$1\ell_{sy}$ $+1p_{y} \ge 1$
$f_{xs} (x \neq s, t):$	$1\ell_{xs}-1p_x \geq -1$
$f_{ty} (y \neq s, t)$:	$1\ell_{ty} + 1p_{y} \ge 0$
f_{xt} ($x \neq s, t$):	$1\ell_{xt} - 1p_x \ge 0$
f_{st} :	$1\ell_{st} \geq 1$
0	$1\ell_{ts} \geq -1$
515	$\ell_{XV} \ge 0$
	$v_{XY} \geq 0$

Flows

Definition 18

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} \; .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

EADS II © Harald Räcke

114

5.6 Computing Duals

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

הר	ПП	EADS II © Harald	
	IJЦ	©Harald	Räcke

5.6 Computing Duals

