Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zé‘:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke



Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zif:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {fy,} be the maximum
frequency.
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Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.
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Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.
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Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
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Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.
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Technique 1: Round the LP solution.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.
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Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.
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Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

v

We know that >, cq, x; = 1.

v

The sum contains at most f;, < f elements.

v

v

This set will be selected. Hence, u is covered.

Therefore one of the sets that contain u must have x; > 1/f.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

D wi

iel
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1
= f - cost(x)
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

icl i=1
= f - cost(x)
<f-OPT.
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:uESi x;i=1
x;i =0
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2ueU Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
x;i =0 YVu = 0
13.2 Rounding the Dual a =
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.
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Technique 2: Rounding the Dual Solution.
Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.
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Technique 2: Rounding the Dual Solution.
Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

» This means >, cs, Yu < w; for all sets S; that contain u.
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

iel
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

=>iel:uesS}  yu
u
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Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel uues;

=>iel:uesS}  yu
u

= quyu
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS}  yu
u
Squyu
u

Sfzyu
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS}  yu
u
Squyu
u
Sfzyu
u

< fcost(x™*)
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
=>Hiel:ueSi} - yu
u
= quyu
m
= fzyu
u

< fcost(x™*)
< f-OPT
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second

algorithm. Then
Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

v

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

Suppose that we take S; in the first algorithm. l.e., i € I.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1y <0

210

3: while exists u ¢ (J;<; S; do

4 increase dual variable y; until constraint for some
new set Sy becomes tight

I—Tu{{¥}

v

T
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

]

S~ §; forall j

while I not a set cover do
¢ —argmin; ., I%JI
I-1u{¥}
Sj—S;j—S; forallj

A vl AW N~

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 4
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

. a; ics Ai a;
mm—l<72165 ! < max -

i bi Xiesbi i by
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wy
min —
J 185
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W W
min 1 < 2.jeoPT vj
i 1851 Xjeort 1)l
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi 2jeopT W) OPT
min . < = <
i 181 Xjeort ISj1 Xjcopr IS
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT

min —— < o <
i 1S5l Z.jGOPT|Sj| zjeopT|Sj| Ny
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT
min —— < o <
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —% < J -
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
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Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§j|.
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Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§’j|.

B IS;IOPT  nyp—ny,,
oy ng

- OPT

wj
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Technique 4: The Greedy Algorithm

D wj

Jjel
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Technique 4: The Greedy Algorithm

S
ny —n
ijg TR opT
jeI {=1
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Technique 4: The Greedy Algorithm
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Technique 4: The Greedy Algorithm
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Technique 4: The Greedy Algorithm

=H, - OPT < OPT(Inn +1) .
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Technique 4: The Greedy Algorithm

A tight example:
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[ (1-xj)

j:’I/LESj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=[] Q=-xp) =< [] e

j:’I/LESj j:‘uESj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e* Zj:uGSj Xj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e*Zj:ueijj < 671
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[ (1-xj) < 1_[ e Xi

j:uESj j:ueSj

_ e*Zj:uEijj < 671 .

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0
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Pr[3u € U not covered after £ round]
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u» not covered Vv

< ZPr[ui not covered after € rounds]
i

...V Uy not covered]
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 5
With high probability O (logn) rounds suffice.
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 5
With high probability O (logn) rounds suffice.

With high probability:
For any constant & the number of rounds is at most O(logn)
with probability at least 1 — n~«.
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Proof: We have

Pr[#rounds > (« + 1) Inn] < ne-(@rinn —

n—O(
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Expected Cost

> Version A.
Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost]
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~«
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1
< mlz‘[cost] < m((x +1)Inn - cost(LP)

T
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ( + 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

T
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ( + 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

form=2and x> 1.

T
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 6 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
2poly(logn))_
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Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

v

n=2k_-1
Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

Sy =1{x|xTy =1}

each set contains 2¥~1 vectors; each vector is contained in

T

2k=1 sets
1 2 . . .
> Xi = kT = 41 is fractional solution.
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Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).
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Techniques:

>

>

>

Deterministic Rounding
Rounding of the Dual
Primal Dual

Greedy

Randomized Rounding
Local Search

Rounding Data + Dynamic Programming

T
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