	Part II	
	Linear Programming	
הח) הח) EADS II		
□□□□□ © Harald Räcke		11

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

	only brew ale:	34 barrels of ale	⇒ 442€
--	----------------	-------------------	--------

- only brew beer: 32 barrels of beer ⇒ 736€
- ► 7.5 barrels ale, 29.5 barrels beer ⇒ 776€
- ► 12 barrels ale, 28 barrels beer ⇒ 800€

Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

EADS II © Harald Räcke 3 Introduction 12

Brewery Problem

Linear Program

DD EADS II

EADS II © Harald Räcke

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

	150	+	23b	
s.t.	5 <i>a</i>	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

3 Introduction

EADS II ||||||| © Harald Räcke

Standard Form LPs

LP in standard form:

- input: numbers a_{ij} , c_j , b_i
- output: numbers x_j
- n =#decision variables, m = #constraints
- maximize linear objective function subject to linear (in)equalities

Standard Form LPs

Original LP

max	13a	+	23b	
s.t.	5 <i>a</i>	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

Standard Form

Add a slack variable to every constraint.

	max	13a	+	23b									
	s.t.	5a	+	15 <i>b</i>	+	S_C					= 480		
		4 <i>a</i>	+	4b			+	s_h			= 160		
		35a	+	20 <i>b</i>					+	s_m	= 1190		
		а	,	b	,	S_C	,	s_h	,	s_m	≥ 0		
EADS © Hai	II rald Räcke				3 Ir	ntroduc	tion					1	6

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

$$a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$$

 $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

```
© Harald Räcke
```

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

equality to less or equal:

 $a-3b+5c = 12 \implies a-3b+5c \le 12$ $-a+3b-5c \le -12$

equality to greater or equal:

 $a-3b+5c = 12 \implies a-3b+5c \ge 12$ $-a+3b-5c \ge -12$

unrestricted to nonnegative:

x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

EADS II © Harald Räcke 3 Introduction

19

21

Fundamental QuestionsDefinition 1 (Linear Programming Problem (LP))Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?Questions:Is LP in NP?Is LP in co-NP?Is LP in P?Input size:

n number of variables, *m* constraints, *L* number of bits to encode the input

EADS II © Harald Räcke

3 Introduction

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

EADS II © Harald Räcke	3 Introduction

Definitions

Let for a Linear Program in standard form $P = \{ x \mid Ax = b, x \ge 0 \}.$

- ▶ *P* is called the feasible region (Lösungsraum) of the LP.
- A point $x \in P$ is called a feasible point (gültige Lösung).
- If $P \neq \emptyset$ then the LP is called feasible (erfullbar). Otherwise, it is called infeasible (unerfüllbar).
- An LP is bounded (beschränkt) if it is feasible and
 - $c^T x < \infty$ for all $x \in P$ (for maximization problems)
 - $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

EADS II © Harald Räcke

3 Introduction

24

Definition 2

Given points $x, y \in \mathbb{R}^n$, a point $z \in \mathbb{R}^n$ is a convex combination of x and y if

$$z = \lambda x + (1 - \lambda)y$$

for some $\lambda \in [0, 1]$.

Definition 3

A set $X \subseteq \mathbb{R}^n$ is convex if the convex combination of any two poins in X is also in X.

Definition 4

EADS II

© Harald Räcke

A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Lemma 5 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex than also

 $Q = \{ x \in P \mid f(x) \le t \}$

3 Introduction

Definition 6

The dimension of a set $X \subseteq \mathbb{R}^n$ is the dimension of the vector space generated by vectors of the form (x - y) with $x, y \in X$.

Definition 7

A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 8

A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \le b\}$, for $a \ne 0$.

EADS II © Harald Räcke

3 Introduction

27

Definitions

Definition 10

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \dots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 11 A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

Definitions

Definition 9

A polytop is a set $P \subseteq \mathbb{R}^n$ that is the convex hull of a finite set of points, i.e., P = conv(X) where

$$\operatorname{conv}(X) = \left\{ \sum_{i=1}^{\ell} \lambda_i x_i \mid \ell \in \mathbb{N}, x_1, \dots, x_{\ell} \in X, \lambda_i \ge 0, \sum_i \lambda_i = 1 \right\}$$

3 Introduction

and |X| = c.

EADS II © Harald Räcke

Definition 13

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

 $H(a,b) = \{x \in \mathbb{R}^n \mid ax = b\}$

is a supporting hyperplane of *P* if $max{ax | x \in P} = b$.

Definition 14

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 15

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face *e* is an edge of *P* if *e* is a face and dim(e) = 1.

3 Introduction

▶ a face F is a facet of P if F is a face and dim(F) = dim(P) - 1.

הם הר	EADS II © Harald Räcke
	© Harald Räcke

31

Observation

The feasible region of an LP is a Polyhedron.

EADS II © Harald Räcke

3 Introduction

33

Equivalent definition for vertex:

Definition 16

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T x < c^T y$, for all $y \in P$.

Definition 17 Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 18

A vertex is also an extreme point.

EADS II © Harald Räcke

3 Introduction

32

Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

Convex Sets

Case 1. $[\exists j \text{ s.t. } d_i < 0]$

- increase λ to λ' until first component of $x + \lambda d$ hits 0
- $x + \lambda' d$ is feasible. Since $A(x + \lambda' d) = b$ and $x + \lambda' d \ge 0$
- $x + \lambda' d$ has one more zero-component ($d_k = 0$ for $x_k = 0$ as $x \pm d \in P$)
- $c^T x' = c^T (x + \lambda' d) = c^T x + \lambda' c^T d \ge c^T x$

Case 2. $[d_i \ge 0 \text{ for all } j \text{ and } c^T d > 0]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
- ▶ as $\lambda \to \infty$, $c^T(x + \lambda d) \to \infty$ as $c^T d > 0$

	3 Introduction	
🛛 🕒 🗋 🕼 © Harald Räcke		35

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_i > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇐)

EADS II

©Harald Räcke

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_i \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0

3 Introduction

- $d_i = 0$ for all j with $x_i = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- ► assume *A_B* has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend *d* to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_i = 0$ whenever $x_i = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

	3 Introduction
U @ Harald Bäcko	

Theorem 20

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

define
$$c_j = \begin{cases} 0 & j \in B \\ 1 & j \notin B \end{cases}$$

- then $c^T x = 0$ and $c^T y \ge 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B Y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

50 [00]	EADS II © Harald Räcke
	© Harald Räcke

39

3 Introduction

40

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- **C2** if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

From now on we will always assume that the constraint matrix of a standard form LP has full row rank.

Theorem 21

Given $P = \{x \mid Ax = b, x \ge 0\}$. x is extreme point iff there exists $B \subseteq \{1, \ldots, n\}$ with |B| = m and

- \blacktriangleright A_B is non-singular
- $\bullet \ x_B = A_B^{-1}b \ge 0$
- $\blacktriangleright x_N = 0$

where $N = \{1, ..., n\} \setminus B$.

Proof

Take $B = \{j \mid x_i > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

3 Introduction

50 00	EADS II © Harald Räcke
	© Harald Räcke

Basic Feasible Solutions

A BFS fulfills the *m* equality constraints.

In addition, at least n - m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least *n* constraints are fulfilled with equality.

Basic Feasible Solutions

 $x \in \mathbb{R}^n$ is called basic solution (Basislösung) if Ax = b and rank(A_I) = |J| where $J = \{j \mid x_i \neq 0\}$;

x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$.

A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with rank $(A_B) = m$ and |B| = m.

 $x \in \mathbb{R}^n$ with $A_B x = b$ and $x_i = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu *B* assoziierte Basislösung)

EADS II © Harald Räcke

EADS II

3 Introduction

Basic Feasible Solutions Definition 22 For a general LP (min{ $c^T x \mid Ax \ge b$ }) with *n* variables a point *x* is a basic feasible solution if x is feasible and there exist n(linearly independent) constraints that are tight.

3 Introduction

EADS II ∐||||| © Harald Räcke

45

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

Fundamental Questions

Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- ► Is LP in P?

Proof:

• Given a basis *B* we can compute the associated basis solution by calculating $A_B^{-1}b$ in polynomial time; then we can also compute the profit.

3 Introduction

48

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the optimum is slow.

Simplex Algorithm [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.

Two BFSs are called adjacent if the bases just differ in one variable.

EADS II © Harald Räcke

4 Simplex Algorithm

	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$+ s_c + s_h$		
	_	+ S _n , S _c , S _h , S _n		
4a + 35a + 2	$15b + s_c$		basis = A = B = Z = 0 $s_c = 486$ $s_h = 166$ $s_m = 119$)
EADS II © Harald Räcke		lex Algorithm		5

max Z	basis = { s_c, s_h, s_m }
13a + 23b - Z = 0	a = b = 0
$5a + 15b + s_c = 480$	Z = 0
$4a + 4b + s_h = 160$	$s_c = 480$ $s_h = 160$
$35a + 20b + s_m = 1190$	$s_h = 100$ $s_m = 1190$
a , b , s_c , s_h , $s_m \ge 0$	- 112

- Choose variable with coefficient ≥ 0 as entering variable.
- If we keep a = 0 and increase b from 0 to θ > 0 s.t. all constraints (Ax = b, x ≥ 0) are still fulfilled the objective value Z will strictly increase.
- For maintaining Ax = b we need e.g. to set $s_c = 480 15\theta$.
- Choosing \(\theta\) = min{480/15, 160/4, 1190/20}\) ensures that in the new solution one current basic variable becomes 0, and no variable goes negative.
- The basic variable in the row that gives min{480/15, 160/4, 1190/20} becomes the leaving variable.

Pivoting Step

max Z		basis = { s_c, s_h, s_m }
13a + 23b -	Z = 0	a = b = 0
$5a + 15b + s_c$	= 480	Z = 0
$4a + 4b + s_h$	= 160	$s_c = 480$
$35a + 20b + s_m$	= 1190	$s_h = 160$ $s_m = 1190$
a, b, s_c, s_h, s_m	≥ 0	

- choose variable to bring into the basis
- chosen variable should have positive coefficient in objective function
- apply min-ratio test to find out by how much the variable can be increased
- pivot on row found by min-ratio test
- the existing basis variable in this row leaves the basis

max Z		
13a + 23b	-Z = 0	
$5a + 15b + s_c$	= 480	
$4a + 4b + s_h$	= 160	
$35a + 20b + s_m$	= 1190	
a, b, s _c , s _h , s _m	≥ 0	

$basis = \{s_c, s_h, s_m\}$
a = b = 0
Z = 0
$s_c = 480$
$s_h = 160$
$s_m = 1190$

Substitute
$$b = \frac{1}{15}(480 - 5a - s_c)$$
.

max	хZ				
1	$\frac{16}{3}a$	$-\frac{23}{15}s_c$	_	Z = -736	basis = $\{b, s_h, s_m\}$
	5	15			$a = s_c = 0$
	$\frac{1}{3}a + b$	$+\frac{1}{15}S_{c}$		= 32	Z = 736
	$\frac{8}{2}a$	$-\frac{4}{15}s_{c}+s_{h}$		= 32	b = 32
	5	10		-	$s_h = 32$
-	$\frac{35}{3}a$	$-\frac{4}{3}S_{c}$	$+ s_m$	= 550	$s_m = 550$
	a,b	, S_c , S_h	, <i>S</i> _m	≥ 0	

Choose variable *a* to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2. Substitute $a = \frac{3}{8}(32 + \frac{4}{15}s_c - s_h)$.

Matrix View

Let our linear program be

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , x_N \ge 0$$

The simplex tableaux for basis B is

 $\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & x_{N} &\geq& 0 \end{array}$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II © Harald Räcke	4 Simplex Algorithm
🛛 🛄 🔲 🖾 📽 Harald Räcke	

57

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are non-positive.

Solution is optimal:

- any feasible solution satisfies all equations in the tableaux
- in particular: $Z = 800 s_c 2s_h$, $s_c \ge 0$, $s_h \ge 0$
- hence optimum solution value is at most 800
- the current solution has value 800

EADS II © Harald Räcke	4 Simplex Algorithm	56

Algebraic Definition of Pivoting

- Given basis *B* with BFS x^* .
- Choose index $j \notin B$ in order to increase x_i^* from 0 to $\theta > 0$.
 - Other non-basis variables should stay at 0.
 - Basis variables change to maintain feasibility.
- Go from x^* to $x^* + \theta \cdot d$.

Requirements for d:

- $d_j = 1$ (normalization)
- ► $d_{\ell} = 0, \ell \notin B, \ell \neq j$
- $A(x^* + \theta d) = b$ must hold. Hence Ad = 0.
- Altogether: $A_B d_B + A_{*j} = Ad = 0$, which gives $d_B = -A_B^{-1}A_{*j}$.

EADS II © Harald Räcke	4 Simplex Algorithm

Algebraic Definition of Pivoting Definition 24 (Reduced Cost) For a basis *B* the value $\tilde{c}_j = c_j - c_B^T A_B^{-1} A_{*j}$ is called the reduced cost for variable x_j . Note that this is defined for every *j*. If $j \in B$ then the above term is 0.

EADS II © Harald Räcke

4 Simplex Algorithm

Algebraic Definition of Pivoting

Definition 23 (*j*-th basis direction)

Let *B* be a basis, and let $j \notin B$. The vector *d* with $d_j = 1$ and $d_{\ell} = 0, \ell \notin B, \ell \neq j$ and $d_B = -A_B^{-1}A_{*j}$ is called the *j*-th basis direction for *B*.

Going from x^* to $x^* + \theta \cdot d$ the objective function changes by

 $\theta \cdot c^T d = \theta (c_j - c_B^T A_B^{-1} A_{*j})$

EADS II © Harald Räcke

59

61

4 Simplex Algorithm

Algebraic Definition of Pivoting Let our linear program be $c_B^T x_B + c_N^T x_N = Z$ $A_B x_B + A_N x_N = b$ $x_B , \quad x_N \ge 0$

The simplex tableaux for basis B is

$$\begin{array}{rcl} (c_{N}^{T}-c_{B}^{T}A_{B}^{-1}A_{N})x_{N} &=& Z-c_{B}^{T}A_{B}^{-1}b\\ Ix_{B} &+& A_{B}^{-1}A_{N}x_{N} &=& A_{B}^{-1}b\\ x_{B} &, & x_{N} &\geq& 0 \end{array}$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II © Harald Räcke 4 Simplex Algorithm

4 Simplex Algorithm

Ouestions:

- What happens if the min ratio test fails to give us a value θ by which we can safely increase the entering variable?
- How do we find the initial basic feasible solution?
- ▶ Is there always a basis *B* such that

$(c_N^T - c_R^T A_R^{-1} A_N) \le 0$?

Then we can terminate because we know that the solution is optimal.

If yes how do we make sure that we reach such a basis?

	4 Simplex Algorithm	
	i omprex i agoritanti	
UUU @ Harald Bäcko		62
		03
© Harald Räcke		63

Termination

The objective function does not decrease during one iteration of the simplex-algorithm.

Does it always increase?

Min Ratio Test

The min ratio test computes a value $\theta \ge 0$ such that after setting the entering variable to θ the leaving variable becomes 0 and all other variables stay non-negative.

For this, one computes b_i/A_{ie} for all constraints *i* and calculates the minimum positive value.

What does it mean that the ratio b_i/A_{ie} (and hence A_{ie}) is negative for a constraint?

This means that the corresponding basic variable will increase if we increase b. Hence, there is no danger of this basic variable becoming negative

What happens if **all** b_i/A_{ie} are negative? Then we do not have a leaving variable. Then the LP is unbounded!

Termination

EADS II

CHarald Räcke

The objective function may not increase!

Because a variable x_{ℓ} with $\ell \in B$ is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 25 (Degeneracy)

A BFS x^* is called degenerate if the set $J = \{j \mid x_i^* > 0\}$ fulfills |J| < m.

It is possible that the algorithm cycles, i.e., it cycles through a sequence of different bases without ever terminating. Happens, very rarely in practise.

EADS II UIII © Harald Räcke

Summary: How to choose pivot-elements

- We can choose a column *e* as an entering variable if *c*_e > 0
 (*c*_e is reduced cost for *x*_e).
- The standard choice is the column that maximizes \tilde{c}_e .
- If $A_{ie} \leq 0$ for all $i \in \{1, ..., m\}$ then the maximum is not bounded.
- ► Otw. choose a leaving variable ℓ such that b_ℓ/A_{ℓe} is minimal among all variables *i* with A_{ie} > 0.
- If several variables have minimum $b_{\ell}/A_{\ell e}$ you reach a degenerate basis.
- Depending on the choice of l it may happen that the algorithm runs into a cycle where it does not escape from a degenerate vertex.

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and we can conclude that the LP is <u>unbounded</u>, or we terminate because the vector of reduced cost is non-positive. In the latter case we have an <u>optimum solution</u>.

How do we come up with an initial solution?

- $Ax \leq b, x \geq 0$, and $b \geq 0$.
- ► The standard slack from for this problem is Ax + Is = b, x ≥ 0, s ≥ 0, where s denotes the vector of slack variables.
- Then s = b, x = 0 is a basic feasible solution (how?).
- We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary problem?

הח EADS II	4 Simplex Algorithm	
UUU GHarald Räcke		71

Optimality

Lemma 26

Let *B* be a basis and x^* a BFS corresponding to basis *B*. $\tilde{c} \le 0$ implies that x^* is an optimum solution to the LP.

החוחר	EADS II © Harald Räcke
	© Harald Räcke

4 Simplex Algorithm

73

Two phase algorithm

Suppose we want to maximize $c^T x$ s.t. $Ax = b, x \ge 0$.

- **1.** Multiply all rows with $b_i < 0$ by -1.
- **2.** maximize $-\sum_i v_i$ s.t. Ax + Iv = b, $x \ge 0$, $v \ge 0$ using Simplex. x = 0, v = b is initial feasible.
- **3.** If $\sum_i v_i > 0$ then the original problem is infeasible.
- **4.** Otw. you have $x \ge 0$ with Ax = b.
- 5. From this you can get basic feasible solution.
- **6.** Now you can start the Simplex for the original problem.

הם הר	EADS II © Harald Räcke
	© Harald Räcke

4 Simplex Algorithm

Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

EADS II © Harald Räcke

Duality

Definition 27 Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program *P* (called the primal linear program).

The linear program *D* defined by

 $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$

is called the dual problem.

החוחר	EADS II © Harald Räcke
	© Harald Räcke

5.1 Weak Duality

Weak Duality

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 29 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

$$c^T \hat{x} \le z \le w \le b^T \hat{y} \ .$$

Lemma 28

The dual of the dual problem is the primal problem.

Proof:

EADS II © Harald Räcke

Duality

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

• $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Sel en EADS II	5.1 Weak Duality	
U U U © Harald	Räcke	76
	hache	

Weak Duality $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$ This gives $c^{T}\hat{x} \le \hat{y}^{T}A\hat{x} \le b^{T}\hat{y} \ .$ Since, there exists primal feasible \hat{x} with $c^{T}\hat{x} = z$, and dual feasible \hat{y} with $b^{T}y = w$ we get $z \le w$. If P is unbounded then D is infeasible.

EADS II © Harald Räcke 5.1 Weak Duality

77

The following linear programs form a primal dual pair:

 $z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{b^T y \mid A^T y \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

10	EADS II © Harald Räcke	5.1 Weak Duality
	🖳 🗌 🖉 Harald Räcke	

Proof

Primal:

$$\max\{c^{T}x \mid Ax = b, x \ge 0\}$$

= $\max\{c^{T}x \mid Ax \le b, -Ax \le -b, x \ge 0$
= $\max\{c^{T}x \mid \begin{bmatrix} A \\ -A \end{bmatrix} x \le \begin{bmatrix} b \\ -b \end{bmatrix}, x \ge 0\}$

Dual:

$$\min\{\begin{bmatrix} b^T & -b^T \end{bmatrix} y \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} y \ge c, y \ge 0\}$$

=
$$\min\left\{\begin{bmatrix} b^T & -b^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \mid \begin{bmatrix} A^T & -A^T \end{bmatrix} \cdot \begin{bmatrix} y^+ \\ y^- \end{bmatrix} \ge c, y^- \ge 0, y^+ \ge 0$$

=
$$\min\left\{b^T \cdot (y^+ - y^-) \mid A^T \cdot (y^+ - y^-) \ge c, y^- \ge 0, y^+ \ge 0\right\}$$

=
$$\min\left\{b^T y' \mid A^T y' \ge c\right\}$$

EADS II	
© Harald	Räcke

5.2 Simplex and Duality

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

 $z = \max\{c^T x \mid Ax = b, x \ge 0\}$ $w = \min\{b^T y \mid A^T y \ge c\}$

This means for computing the dual of a standard form LP, we do not have non-negativity constraints for the dual variables.

EADS II © Harald Räcke

79

81

5.2 Simplex and Duality

80

Proof of Optimality Criterion for Simplex Suppose that we have a basic feasible solution with reduced cost $\tilde{c} = c^T - c_B^T A_B^{-1} A \le 0$ This is equivalent to $A^T (A_B^{-1})^T c_B \ge c$ $y^* = (A_B^{-1})^T c_B$ is solution to the dual min $\{b^T y | A^T y \ge c\}$. $b^T y^* = (Ax^*)^T y^* = (A_B x_B^*)^T y^*$ $= (A_B x_B^*)^T (A_B^{-1})^T c_B = (x_B^*)^T A_B^T (A_B^{-1})^T c_B$ $= c^T x^*$ Hence, the solution is optimal. Solution 2.2 Simplex and Duality

Strong Duality

Theorem 30 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

EADS II © Harald Räcke 5.3 Strong Duality A

84

Strong Duality

Theorem 31 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

החוחר	EADS II © Harald Räcke
	© Harald Räcke

85

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

Lemma 33 (Projection Lemma)

Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.

Proof of the Projection Lemma (continued)

$$x^*$$
 is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{split} \| y - x^* \|^2 &\leq \| y - x^* - \epsilon (x - x^*) \|^2 \\ &= \| y - x^* \|^2 + \epsilon^2 \| x - x^* \|^2 - 2\epsilon (y - x^*)^T (x - x^*) \end{split}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

Letting $\epsilon \rightarrow 0$ gives the result.

הם הנ	EADS II © Harald Räcke
	© Harald Räcke

5.4 Strong Duality B

Proof of the Projection Lemma

- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.

Theorem 34 (Separating Hyperplane)

Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. ($a^T y < \alpha$; $a^T x \ge \alpha$ for all $x \in X$)

EADS II © Harald Räcke

89

5.4 Strong Duality B

Proof of the Hyperplane Lemma

- Let $x^* \in X$ be closest point to γ in X.
- By previous lemma $(\gamma x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* \gamma)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T \gamma = a^T (x^* a) = \alpha ||a||^2 < \alpha$

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is γ with $A^T \gamma \ge 0$, $b^T \gamma < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

$0 \in S \Rightarrow \alpha \leq 0 \Rightarrow \gamma^T b < 0$

 $\gamma^T A x \ge \alpha$ for all $x \ge 0$. Hence, $\gamma^T A \ge 0$ as we can choose x arbitrarily large.

Lemma 35 (Farkas Lemma) Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds. 1. $\exists x \in \mathbb{R}^n$ with Ax = b. $x \ge 0$ **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \ge 0$, $b^T \gamma < 0$ Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then $0 > v^T b = v^T A x \ge 0$ Hence, at most one of the statements can hold. EADS II © Harald Räcke 5.4 Strong Duality B

Lemma 36 (Farkas Lemma; different version) Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds. 1. $\exists x \in \mathbb{R}^n$ with $Ax \le b$. $x \ge 0$ **2.** $\exists \gamma \in \mathbb{R}^m$ with $A^T \gamma \ge 0$, $b^T \gamma < 0$, $\gamma \ge 0$ Rewrite the conditions: **1.** $\exists x \in \mathbb{R}^n$ with $\begin{bmatrix} A \\ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$ **2.** $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

EADS II ©Harald Räcke

Proof of Strong Duality

 $P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

D: $w = \min\{b^T \gamma \mid A^T \gamma \ge c, \gamma \ge 0\}$

Theorem 37 (Strong Duality)

Let *P* and *D* be a primal dual pair of linear programs, and let zand w denote the optimal solution to P and D, respectively (i.e., *P* and *D* are non-empty). Then

z = w.

EADS II © Harald Räcke	5.4 Strong Duality B	

Proof of Strong Duality $\exists y \in \mathbb{R}^m; v \in \mathbb{R}$ s.t. $A^T \gamma - \nu \geq 0$ $b^T y - \alpha v < 0$ $\gamma, \nu \geq 0$ If the solution γ , ν has $\nu = 0$ we have that

$$\exists y \in \mathbb{R}^m \\ \text{s.t.} \quad A^T y \ge 0 \\ b^T y < 0 \\ y \ge 0$$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

הם הר	EADS II © Harald Räcke
	© Harald Räcke

97

95

Proof of Strong Duality

 $z \leq w$: follows from weak duality

 $z \geq w$:

EADS II

C Harald Räcke

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$				$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$
s.t.				s.t. $A^T \gamma - c \nu \geq 0$
	$-c^T x$	\leq	$-\alpha$	$b^T y - \alpha v < 0$
	x	\geq	0	$y, v \geq 0$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

	5.4 Strong Duality B	
UUU G Harald Räcke		96

Proof of Strong Duality
Hence, there exists a solution y, v with $v > 0$. We can rescale this solution (scaling both y and v) s.t. $v = 1$.
Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

5.4 Strong Duality B

Fundamental Questions

Definition 38 (Linear Programming Problem (LP)) Let $A \in \mathbb{O}^{m \times n}$, $b \in \mathbb{O}^m$, $c \in \mathbb{O}^n$, $\alpha \in \mathbb{O}$. Does there exist

 $x \in \mathbb{Q}^n$ s.t. $Ax = b, x \ge 0, c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- Is LP in co-NP? yes!
- ► Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.

	DS II	5.4 Strong Du
UUUU ©I	Harald Räcke	

```
iality B
```

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

 $c^T x^* \le y^{*T} A x^* \le b^T y^*$

Because of strong duality we then get

$$c^T x^* = y^{*T} A x^* = b^T y^*$$

This gives e.g.

$$\sum_{j} (y^T A - c^T)_j x_j^* = 0$$

From the constraint of the dual it follows that $y^T A \ge c^T$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $(y^T A - c^T)_j > 0$ (the *j*-th constraint in the dual is not tight) then $x_j = 0$ (2.). The result for (1./3./4.) follows similarly.

50 00	EADS II © Harald Räcke
	© Harald Räcke

5.5 Interpretation of Dual Variables

101

99

Complementary Slackness

Lemma 39

Assume a linear program $P = \max\{c^T x \mid Ax \le b; x \ge 0\}$ has solution x^* and its dual $D = \min\{b^T y \mid A^T y \ge c; y \ge 0\}$ has solution y^* .

- **1.** If $x_i^* > 0$ then the *j*-th constraint in *D* is tight.
- **2.** If the *j*-th constraint in *D* is not tight than $x_i^* = 0$.
- **3.** If $y_i^* > 0$ then the *i*-th constraint in *P* is tight.
- **4.** If the *i*-th constraint in *P* is not tight than $y_i^* = 0$.

If we say that a variable x_j^* (y_i^*) has slack if $x_j^* > 0$ ($y_i^* > 0$), (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint **and** its corresponding (dual) variable has slack.

```
EADS II
© Harald Räcke
```

5.5 Interpretation of Dual Variables

100

Interpretation of Dual Variables

Brewer: find mix of ale and beer that maximizes profits

Entrepeneur: buy resources from brewer at minimum cost C, H, M: unit price for corn, hops and malt.

Note that brewer won't sell (at least not all) if e.g. 5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by ε_C, ε_H, and ε_M, respectively.

The profit increases to $\max\{c^T x \mid Ax \le b + \varepsilon; x \ge 0\}$. Because of strong duality this is equal to

EADS II 5.5 Interpretation of Dual Variables

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution γ^* might not change. Therefore the profit increases by $\sum_i \epsilon_i \gamma_i^*$.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

EADS II	5.5 Interpretation of Dual Variables	
UUU © Harald Räcke		104

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

Flows

Definition 40

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f : V \times V \mapsto \mathbb{R}_0^+$ that satisfies

1. For each edge (x, y)

$$0 \leq f_{XY} \leq c_{XY} \ .$$

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \; .$$

(flow conservation constraints)

הר	ПП	EADS II © Harald Räcke
	<u> </u>	© Harald Räcke

5.5 Interpretation of Dual Variables

max	$\sum_{z} f_{sz} - \sum_{z} f_{zs}$	
s.t. $\forall (z, w) \in V \times V$	$f_{zw} \leq c_{zw}$	ℓ_{zi}
$\forall w \neq s, t$	$\sum_{z} f_{zw} - \sum_{z} f_{wz} = 0$	p_u
	$f_{zw} \ge 0$	
min	$\sum_{(xy)} c_{xy} \ell_{xy}$	
s.t. $f_{xy}(x, y \neq s, t)$): $1\ell_{xy} - 1p_x + 1p_y \ge 0$)
the second s	$1\ell_{sy} + 1p_y \ge 1$	
	$1\ell_{xs}-1p_x \geq -1$	
	$1\ell_{ty} + 1p_{y} \ge 0$	
	$1\ell_{xt} - 1p_x \ge 0$	
f_{st} :	$1\ell_{st} \geq 1$	
	$1\ell_{ts} \geq -$	
	$\ell_{XY} \geq 0$	

Flows

Definition 41

The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} \; .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

```
EADS II
© Harald Räcke
```

107

109

5.5 Interpretation of Dual Variables

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_x = 1$ or $p_x = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

LP-Formulation of Maxflow

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from *s* to *t* is required to be 1 since $p_s = 1$).

The constraint $p_X \leq \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{xy} + d(y,t)).$

5000	EADS II © Haralo	
	🛛 © Haralo	l Räcke

5.5 Interpretation of Dual Variables

112

Flows

EADS II

©Harald Räcke

Definition 42

An (s, t)-flow in a (complete) directed graph $G = (V, V \times V, c)$ is a function $f: V \times V \mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

 $0 \leq f_{XY} \leq c_{XY}$.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} \ .$$

(flow conservation constraints)

Flows

Definition 43 The value of an (s, t)-flow f is defined as

$$\operatorname{val}(f) = \sum_{X} f_{SX} - \sum_{X} f_{XS} \; .$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

EADS II © Harald Räcke 5.6 Computing Duals

115

LP-Formula	ation of Max	flow	
	min s.t. $f_{xy}(x, y \neq x)$	$\sum_{(xy)} c_{xy} \ell_{xy}$ $\neq s,t): 1\ell_{xy} - 1p_x + 1p_y \geq 0$	0
	$f_{sy} (y \neq s,$	$ \begin{array}{l} t \\ t $	0
	$f_{xt} (x \neq s,$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0
	f_{st} : f_{ts} :	$1\ell_{st} - 1 + 0 \ge 0$ $1\ell_{ts} - 0 + 1 \ge 0$ $\ell_{xy} \ge 0$	0
EADS II		5.6 Computing Duals	
UUU © Harald Räc	ke		117

LP-Formulation of Maxflow

n	nax	$\sum_{z} f_{sz} - \sum_{z} f_{zs}$	
	s.t. $\forall (z, w) \in V \times V$	$f_{zw} \leq c_z$	w lzw
	$\forall w \neq s, t \sum$	$\int_{z} f_{zw} - \sum_{z} f_{wz} = 0$	p _w
		$f_{zw} \geq 0$	
	min	$\sum_{(xy)} c_{xy} \ell_{xy}$	
	s.t. $f_{xy}(x, y \neq s, t)$	$: 1\ell_{xy} - 1p_x + 1p_y \ge$	0
	f_{sy} $(y \neq s, t)$:	$1\ell_{sy}$ $+1p_{y} \ge$	1
	f_{xs} $(x \neq s, t)$:	$1\ell_{xs}-1p_x \geq$	-1
	$f_{ty} (y \neq s, t)$:	$1\ell_{ty}$ $+1p_y \ge$	0
	f_{xt} $(x \neq s, t)$:	$1\ell_{xt}-1p_x \ge$	0
	f_{st} :	$1\ell_{st} \geq$	1
	f_{ts} :	$1\ell_{ts} \geq$	-1
		$\ell_{xy} \geq$	0
		nputing Duals	116
	<i>f_{ts}</i> : 5.6 Cor	$ \begin{array}{ll} 1\ell_{ts} &\geq \\ \ell_{xy} &\geq \\ \end{array} $	-10

$\begin{array}{lll} \min & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} (x, y \neq s, t) \colon 1 \ell_{xy} - 1 p_x + 1 p_y \geq 0 \\ & f_{sy} (y \neq s, t) \colon 1 \ell_{sy} - p_s + 1 p_y \geq 0 \\ & f_{xs} (x \neq s, t) \colon 1 \ell_{xs} - 1 p_x + p_s \geq 0 \\ & f_{ty} (y \neq s, t) \colon 1 \ell_{ty} - p_t + 1 p_y \geq 0 \\ & f_{xt} (x \neq s, t) \colon 1 \ell_{xt} - 1 p_x + p_t \geq 0 \\ & f_{st} \colon 1 \ell_{st} - p_s + p_t \geq 0 \\ & f_{ts} \colon 1 \ell_{ts} - p_t + p_s \geq 0 \\ & \ell_{xy} \geq 0 \end{array}$ with $p_t = 0$ and $p_s = 1$.	LP-Formulation of Maxflow						
s.t. $f_{xy} (x, y \neq s, t)$: $l\ell_{xy} - lp_x + lp_y \ge 0$ $f_{sy} (y \neq s, t)$: $l\ell_{sy} - p_s + lp_y \ge 0$ $f_{xs} (x \neq s, t)$: $l\ell_{xs} - lp_x + p_s \ge 0$ $f_{ty} (y \neq s, t)$: $l\ell_{ty} - p_t + lp_y \ge 0$ $f_{xt} (x \neq s, t)$: $l\ell_{xt} - lp_x + p_t \ge 0$ f_{st} : $l\ell_{st} - p_s + p_t \ge 0$ f_{ts} : $l\ell_{st} - p_s + p_t \ge 0$ $\ell_{xy} \ge 0$							
s.t. $f_{xy} (x, y \neq s, t)$: $l\ell_{xy} - lp_x + lp_y \ge 0$ $f_{sy} (y \neq s, t)$: $l\ell_{sy} - p_s + lp_y \ge 0$ $f_{xs} (x \neq s, t)$: $l\ell_{xs} - lp_x + p_s \ge 0$ $f_{ty} (y \neq s, t)$: $l\ell_{ty} - p_t + lp_y \ge 0$ $f_{xt} (x \neq s, t)$: $l\ell_{xt} - lp_x + p_t \ge 0$ f_{st} : $l\ell_{st} - p_s + p_t \ge 0$ f_{ts} : $l\ell_{st} - p_s + p_t \ge 0$ $\ell_{xy} \ge 0$	ſ	min		$\sum_{(xy)} c_{xy} \ell_{xy}$			
$ \begin{array}{ccccc} f_{xs} \; (x \neq s,t) : & 1\ell_{xs} - 1p_x + \; p_s \geq 0 \\ f_{ty} \; (y \neq s,t) : & 1\ell_{ty} - \; p_t + 1p_y \geq 0 \\ f_{xt} \; (x \neq s,t) : & 1\ell_{xt} - 1p_x + \; p_t \geq 0 \\ f_{st} : & 1\ell_{st} - \; p_s + \; p_t \geq 0 \\ f_{ts} : & 1\ell_{ts} - \; p_t + \; p_s \geq 0 \\ \ell_{xy} \geq 0 \end{array} $		s.t.	$f_{xy}(x, y \neq s, t)$:		0	l	
$f_{ty} (y \neq s, t): \qquad 1\ell_{ty} - p_t + 1p_y \geq 0$ $f_{xt} (x \neq s, t): \qquad 1\ell_{xt} - 1p_x + p_t \geq 0$ $f_{st}: \qquad 1\ell_{st} - p_s + p_t \geq 0$ $f_{ts}: \qquad 1\ell_{ts} - p_t + p_s \geq 0$ $\ell_{xy} \geq 0$			$f_{sy}(y \neq s,t)$:	$1\ell_{sy} - p_s + 1p_y \ge$	0	l	
$f_{xt} (x \neq s, t): \qquad 1\ell_{xt} - 1p_x + p_t \geq 0$ $f_{st}: \qquad 1\ell_{st} - p_s + p_t \geq 0$ $f_{ts}: \qquad 1\ell_{ts} - p_t + p_s \geq 0$ $\ell_{xy} \geq 0$						l	
$f_{st}: \qquad 1\ell_{st} - p_s + p_t \ge 0$ $f_{ts}: \qquad 1\ell_{ts} - p_t + p_s \ge 0$ $\ell_{xy} \ge 0$						l	
$f_{ts}: \qquad 1\ell_{ts} - p_t + p_s \ge 0 \\ \ell_{xy} \ge 0$						l	
$\ell_{xy} \ge 0$						l	
			f_{ts} :			l	
with $p_t = 0$ and $p_s = 1$.	l			$\ell_{XY} \geq$	0		
	with $p_t =$	0 and	$p_{s} = 1.$				
EADS II 5.6 Computing Duals © Harald Räcke 118		cke	5.6 Compu	ting Duals		118	

LP-Formulation of Maxflow

min		$\sum_{(xy)} c_{xy} \ell_{xy}$		
s.t.	f_{xy} :	$1\ell_{xy}-1p_x+1p_y$	\geq	0
		ℓ_{xy}	\geq	0
		p_s	=	1
		p_t	=	0

We can interpret the ℓ_{xy} value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_x \leq \ell_{xy} + p_y$ then simply follows from triangle inequality $(d(x,t) \leq d(x,y) + d(y,t) \Rightarrow d(x,t) \leq \ell_{xy} + d(y,t))$.

	5.6 Computing Duals	
UUU © Harald Räcke		119

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Change LP := $\max\{c^T x, Ax = b; x \ge 0\}$ into LP' := $\max\{c^T x, Ax = b', x \ge 0\}$ such that

I. LP is feasible

- II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).
- III. LP has no degenerate basic solutions

EADS II © Harald Räcke

121

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_{\chi} = 1$ or $p_{\chi} = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

EADS II ©Harald Räcke

5.6 Computing Duals

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may not make progress during an iteration of simplex.

Idea:

Given feasible LP := max{ $c^T x, Ax = b; x \ge 0$ }. Change it into $LP' := \max\{c^T x, Ax = \mathbf{b}', x \ge 0\}$ such that

LP' is feasible

II. If a set *B* of basis variables corresponds to an infeasible basis (i.e. $A_B^{-1}b \neq 0$) then *B* corresponds to an infeasible basis in LP' (note that columns in A_B are linearly independent).

III. LP' has no degenerate basic solutions

EADS II © Harald Räcke	6 Degeneracy Revisited	122
		125

Property I

The new LP is feasible because the set *B* of basis variables provides a feasible basis:

$$A_B^{-1}\left(b+A_B\begin{pmatrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\right)=\chi_B^*+\left(\begin{matrix}\varepsilon\\\vdots\\\varepsilon^m\end{pmatrix}\geq 0$$

הח הר	EADS II © Harald Räcke
	© Harald Räcke

6 Degeneracy Revisited

125

Perturbation

Let *B* be index set of some basis with basic solution

 $x_{B}^{*} = A_{B}^{-1}b \ge 0, x_{N}^{*} = 0$ (i.e. *B* is feasible)

Fix

$$b' := b + A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$
 for $\varepsilon > 0$.

This is the perturbation that we are using.

EADS II © Harald Räcke

6 Degeneracy Revisited

124

Property II

EADS II

© Harald Räcke

Let \tilde{B} be a non-feasible basis. This means $(A_{\tilde{R}}^{-1}b)_i < 0$ for some row *i*.

Then for small enough $\epsilon > 0$

$$\left(A_{\tilde{B}}^{-1}\left(b+A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)\right)_{i}=(A_{\tilde{B}}^{-1}b)_{i}+\left(A_{\tilde{B}}^{-1}A_{B}\left(\frac{\varepsilon}{\vdots}_{\varepsilon^{m}}\right)\right)_{i}<0$$

Hence, \tilde{B} is not feasible.

Property III

Let \tilde{B} be a basis. It has an associated solution

$$x_{\tilde{B}}^* = A_{\tilde{B}}^{-1}b + A_{\tilde{B}}^{-1}A_B \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$$

in the perturbed instance.

We can view each component of the vector as a polynom with variable ε of degree at most m.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, $\epsilon > 0$ small enough gives that no component of the above vector is 0. Hence, no degeneracies.

EADS II 6 © Harald Räcke	Degeneracy Revisited

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also the right choice of ε is difficult.

Idea:

5

Simulate behaviour of LP' without explicitly doing a perturbation.

Since, there are no degeneracies Simplex will terminate when run on $\mathrm{LP}^\prime.$

If it terminates because the reduced cost vector fulfills

 $\tilde{c} = (c^T - c_B^T A_B^{-1} A) \le 0$

then we have found an optimal basis. Note that this basis is also optimal for LP, as the above constraint does not depend on b.

▶ If it terminates because it finds a variable x_j with $\tilde{c}_j > 0$ for which the *j*-th basis direction *d*, fulfills $d \ge 0$ we know that LP' is unbounded. The basis direction does not depend on *b*. Hence, we also know that LP is unbounded.

EADS II ©Harald Räcke

6 Degeneracy Revisited

Lexicographic Pivoting We choose the entering variable arbitrarily as before ($\tilde{c}_e > 0$, of course). If we do not have a choice for the leaving variable then LP' and LP do the same (i.e., choose the same variable). Otherwise we have to be careful.

EADS II ©Harald Räcke

129

Lexicographic Pivoting

In the following we assume that $b \ge 0$. This can be obtained by replacing the initial system $(A_B \mid b)$ by $(A_B^{-1}A \mid A_B^{-1}b)$ where *B* is the index set of a feasible basis (found e.g. by the first phase of the Two-phase algorithm).

Then the perturbed instance is

 $b' = b + \begin{pmatrix} \varepsilon \\ \vdots \\ \varepsilon^m \end{pmatrix}$

EADS II © Harald Räcke	6 Degeneracy Revisited
🛛 🕒 🗋 🕲 🛛 🖓 🛛 🖓 🖉 🖉 🖉	

Lexicographic Pivoting LP chooses an arbitrary leaving variable that has $\hat{A}_{\ell e} > 0$ and minimizes $\theta_{\ell} = \frac{\hat{b}_{\ell}}{\hat{A}_{\ell e}} = \frac{(A_B^{-1}b)_{\ell}}{(A_B^{-1}A_{*e})_{\ell}}$. ℓ is the index of a leaving variable within *B*. This means if e.g. $B = \{1, 3, 7, 14\}$ and leaving variable is 3 then $\ell = 2$.

Matrix View

Let our linear program be

 $\begin{array}{rclcrcrc} c_B^T x_B &+ & c_N^T x_N &= & Z \\ A_B x_B &+ & A_N x_N &= & b \\ x_B &, & x_N &\geq & 0 \end{array}$

The simplex tableaux for basis B is

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x_B , \qquad x_N \ge 0$$

The BFS is given by $x_N = 0$, $x_B = A_B^{-1}b$.

If $(c_N^T - c_B^T A_B^{-1} A_N) \le 0$ we know that we have an optimum solution.

EADS II	6 Degeneracy Revisited	
UUU © Harald Räcke		132

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most $\binom{n}{m}$ iterations, because it will not visit a basis twice.

The input size is $L \cdot n \cdot m$, where *n* is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require $\binom{n}{m}$ iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube

137

Lexicographic Pivoting

This means you can choose the variable/row ℓ for which the vector

$$\frac{\text{th row of } A_B^{-1}(b \mid I)}{(A_B^{-1}A_{*e})_{\ell}}$$

is lexicographically minimal.

Of course only including rows with $(A_R^{-1}A_{*e})_{\ell} > 0$.

This technique guarantees that your pivoting is the same as in the perturbed case. This guarantees that cycling does not occur.

EADS II © Harald Räcke

6 Degeneracy Revisited

Example

However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.

	7 Klee Minty Cube	
UUU © Harald Räcke		140

Observations

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables x_i stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting $\epsilon \rightarrow 0$.

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis $(0, \ldots, 0, 1)$ is the unique optimal basis.
- ► Our sequence S_n starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.

EADS II © Harald Räcke 7 Klee Minty Cube

144

Analysis

The sequence S_n that visits every node of the hypercube is defined recursively

Analysis

Lemma 45 The objective value x_n is increasing along path S_n .

Proof by induction:

n = 1: obvious, since $S_1 = 0 \rightarrow 1$, and 1 > 0.

$n-1 \rightarrow n$

- For the first part the value of $x_n = \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence, also x_n .
- Going from (0, ..., 0, 1, 0) to (0, ..., 0, 1, 1) increases x_n for small enough ϵ .
- For the remaining path S_{n-1}^{rev} we have $x_n = 1 \epsilon x_{n-1}$.
- By induction hypothesis x_{n-1} is increasing along S_{n-1} , hence $-\epsilon x_{n-1}$ is increasing along S_{n-1}^{rev} .

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time ($\Omega(2^{\Omega(n)})$) (e.g. Klee Minty 1972).

Remarks about Simplex

Observation

The simplex algorithm takes at most $\binom{n}{m}$ iterations. Each iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.

EADS II © Harald Räcke

7 Klee Minty Cube

Remarks about Simplex

Theorem

EADS II

© Harald Räcke

For some standard randomized pivoting rules there exist subexponential lower bounds ($\Omega(2^{\Omega(n^{\alpha})})$ for $\alpha > 0$) (Friedmann, Hansen, Zwick 2011).

Remarks about Simplex

Conjecture (Hirsch 1957) The edge-vertex graph of an *m*-facet polytope in *d*-dimensional Euclidean space has diameter no more than m - d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form $\mathcal{O}(\operatorname{poly}(m, d))$ is open.

EADS II © Harald Räcke EADS II

7 Klee Minty Cube

151

8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^T x \mid Ax \ge b; x \ge 0\}$, where $x \in \mathbb{R}^d$ and we have *m* constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- If *d* is much smaller than *m* one can do a lot better.
- In the following we develop an algorithm with running time $\mathcal{O}(d! \cdot m)$, i.e., linear in *m*.

	8 Seidels LP-algorithm	
	o selueis Lr-aiguntinn	
🛛 🕒 🖓 🖾 🖾 Harald Räcke		152
		152

Ensur	ing Conditio	ons					
Giv	en a <mark>standard</mark> m	inimizatio	n LP				
		min	$c^T x$				
		s.t.	Ax	\geq	b		
			x	\geq	0		
hov	v can we obtain a	an LP of tl	he req	luire	d form?		
•	Compute a lov	ver bound	d on a	$c^T x$	for any ba	sic feasible	2
	solution.						
50 00 FA	DS II	8 Seir	dels LP-alo	orithe	1		
	Harald Räcke	0.564		,			154
Computing a Lower Bound

Let *s* denote the smallest common multiple of all denominators of entries in *A*, *b*.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \overline{A} .

If *B* is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

EADS II © Harald Räcke	8 Seidels LP-algorithm	155

Proof:	
Define	$X_{j} = \begin{pmatrix} & & & & \\ e_{1} \cdots e_{j-1} \mathbf{x} e_{j+1} \cdots e_{n} \\ & & & \end{pmatrix}$
Note that exp $det(X_j) = x_j$.	anding along the <i>j</i> -th column gives that
Further, we have a second s	ave
$MX_j = \begin{pmatrix} I \\ I \end{pmatrix}$	$ \begin{vmatrix} & & & & \\ Me_1 \cdots Me_{j-1} & Mx & Me_{j+1} \cdots Me_n \\ & & & \\ \end{vmatrix} = M_j $
► Hence,	$x_j = \det(X_j) = \frac{\det(M_j)}{\det(M)}$
EADS II © Harald Räcke	8 Seidels LP-algorithm

Theorem 46 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_j = \frac{\det(M_j)}{\det(M)}$$

where M_j is the matrix obtained from M by replacing the *j*-th column by the vector b.

EADS II © Harald Räcke

8 Seidels LP-algorithm

Bounding the Determinant

Let Z be the maximum absolute entry occuring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the *j*-th column with vector \bar{b} .

Observe that

157

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \le i \le m} C_{i\pi(i)} \right|$$
$$\leq \sum_{\pi \in S_m} \prod_{1 \le i \le m} |C_{i\pi(i)}|$$
$$\leq m! \cdot Z^m .$$

Bounding the Determinant

Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$
$$\le m^{m/2}Z^m .$$

EADS II 8 Seidels LP-algorithm © Harald Räcke

159

Hadamards Inequality e_{1} e_{2} e_{3} e_{3} e_{3} e_{3} e_{3} e_{3} e_{3} e_{4} e_{1} e_{2} e_{2}

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^T x \ge -mZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H}, d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes $c^T x$ over all feasible points.

In addition it obeys the implicit constraint $c^T x \ge -(mZ)(m! \cdot Z^m) - 1.$

EADS II © Harald Räcke 8 Seidels LP-algorithm

163

Algorithm 1 SeidelLP(\mathcal{H}, d) 1: if d = 1 then solve 1-dimensional problem and return; 2: if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane 3. choose random constraint $h \in \mathcal{H}$ 4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$ 5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$ 6: if \hat{x}^* = infeasible then return infeasible 7: **if** \hat{x}^* fulfills *h* then return \hat{x}^* 8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$ 9: solve $a_h^T x = b_h$ for some variable x_ℓ ; 10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.; 11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$ 12: **if** \hat{x}^* = infeasible **then** return infeasible 13: 14: else add the value of x_{ℓ} to \hat{x}^* and return the solution 15:

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

 $T(m,d) = \begin{cases} Cm & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$

Note that T(m, d) denotes the expected running time.

EADS II © Harald Räcke

8 Seidels LP-algorithm

8 Seidels LP-algorithm

d > 1; m > 1: (by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m}Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

 $\leq Cf(d)m$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

EADS II	8 Seidels LP-algorithm	
UUU© Harald Räcke		169

8 Seidels LP-algorithm

Let *C* be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \leq Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le Cm \le Cf(1) \max\{1, m\} \text{ for } f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$

d > 1; m = 1:

$$T(1,d) = O(d) + T(0,d) + d(O(d) + T(0,d-1))$$

$$\leq Cd + Cd + Cd^{2} + dCf(d-1)$$

$$\leq Cf(d) \max\{1,m\} \text{ for } f(d) \geq 3d^{2} + df(d-1)$$

8 Seidels LP-algorithm

• Define
$$f(1) = 3 \cdot 1^2$$
 and $f(d) = df(d-1) + 3d^2$ for $d > 1$.

Then

167

$$f(d) = 3d^{2} + df(d-1)$$

= $3d^{2} + d[3(d-1)^{2} + (d-1)f(d-2)]$
= $3d^{2} + d[3(d-1)^{2} + (d-1)[3(d-2)^{2} + (d-2)f(d-3)]]$
= $3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$
+ $3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$
= $3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$
= $O(d!)$
since $\sum_{i \ge 1} \frac{i^{2}}{i!}$ is a constant.

EADS II ©Harald Räcke 8 Seidels LP-algorithm

Complexity

LP Feasibility Problem (LP feasibility)

- Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}$ with $Ax = b, x \ge 0$?
- Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Is this problem in NP or even in P?

۲۰۰ EADS II 9 The Ellipsoid Algorithm	
© Harald Räcke	171
	171

- In the following we sometimes refer to $L := L(\lceil A \mid b \rceil)$ as the input size (even though the real input size is something in $\Theta(L([A|b]))).$
- In order to show that LP-decision is in NP we show that if there is a solution x then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in L([A|b])).

The Bit Model

Input size

• The number of bits to represent a number $a \in \mathbb{Z}$ is

$\lceil \log_2(|a|) \rceil + 1$

• Let for an $m \times n$ matrix M, L(M) denote the number of bits required to encode all the numbers in *M*.

$$L(M) := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- Then the input length is $\Theta(L([A|b]))$.

Suppose that Ax = b; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

 $x_B = A_B^{-1}b$

and all other entries in x are 0.

DD EADS II

© Harald Räcke

Size of a Basic Feasible Solution

Lemma 47

Let $M \in \mathbb{Z}^{m \times m}$ be an invertable matrix and let $b \in \mathbb{Z}^m$. Further define $L' = L([M | b]) + n \log_2 n$. Then a solution to Mx = b has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^{L'}$ and $|D| \leq 2^{L'}$.

Proof: Cramers rules says that we can compute x_i as

 $x_j = \frac{\det(M_j)}{\det(M)}$

where M_j is the matrix obtained from M by replacing the *j*-th column by the vector **b**.

EADS II	9
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	

9 The Ellipsoid Algorithm

175

177

This means if Ax = b, $x \ge 0$ is feasible we only need to consider vectors x where an entry x_i can be represented by a rational number with encoding length polynomial in the input length *L*.

Hence, the x that we have to guess is of length polynomial in the input-length *L*.

For a given vector x of polynomial length we can check for feasibility in polynomial time.

Hence, LP feasibility is in NP.

EADS II

9 The Ellipsoid Algorithm |||||| © Harald Räcke

Bounding the Determinant

Let $X = A_R$. Then

$$|\det(X)| = \left| \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{1 \le i \le n} X_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_n} \prod_{1 \le i \le n} |X_{i\pi(i)}|$$

$$\leq n! \cdot 2^{L([A|b])} \le n^n 2^L \le 2^{L'} .$$

Analogously for $det(M_i)$.

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

176

Reducing LP-solving to LP decision.

Given an LP max{ $c^T x \mid Ax = b; x \ge 0$ } do a binary search for the optimum solution

(Add constraint $c^T x - \delta = M$; $\delta \ge 0$ or ($c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \dots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2L'}$.

Here we use $L' = L([A | b | c]) + n \log_2 n$ (it also includes the encoding size of *c*).

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{max} + 1$ and check for feasibility.

	9 The Ellipsoid Algorithm	
UUU© Harald Räcke	1	179

Ellipsoid Method

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- If center $z \in K$ STOP.
- Otw. find a hyperplane separating *K* from *z* (e.g. a violated constraint in the LP).
 Shift hyperplane to contain *K*

Е

- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $K \cap H$.
- REPEAT

```
EADS II
© Harald Räcke
```

9 The Ellipsoid Algorithm

Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- ▶ What if the polytop *K* is unbounded?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

Definition 48

A mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where *L* is an invertible matrix is called an affine transformation.

Definition 49 A ball in \mathbb{R}^n with center *c* and radius *r* is given by

$$B(c,r) = \{x \mid (x-c)^{T} (x-c) \le r^{2}\}\$$
$$= \{x \mid \sum_{i} (x-c)_{i}^{2} / r^{2} \le 1\}\$$

B(0,1) is called the unit ball.

EADS II © Harald Räcke	9 The Ellipsoid Algorithm

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{O}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix O'for the original ellipsoid E.

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

= $\{y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1)\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T L^{-1} L^{-1}(y-t) \le 1\}$
= $\{y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1\}$

where $Q = LL^T$ is an invertible matrix.

EADS II © Harald Räcke

9 The Ellipsoid Algorithm

183

The Easy Case

- The obtain the matrix $\hat{Q'}^{-1}$ for our ellipsoid $\hat{E'}$ note that $\hat{E'}$ is axis-parallel.
- Let a denote the radius along the x₁-axis and let b denote the (common) radius for the other axes.
- ► The matrix

 $\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

EADS II	9 The Ellipsoid Algorithm	
🛛 🕒 🛛 🖉 🤅 Harald Räcke		187

The Easy Case • As $\hat{Q}' = \hat{L}' \hat{L}'^{t}$ the matrix \hat{Q}'^{-1} is of the form $\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^{2}} & 0 & \cdots & 0\\ 0 & \frac{1}{b^{2}} & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ 0 & \cdots & 0 & \frac{1}{b^{2}} \end{pmatrix}$

The Easy Case
For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ gives
$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$ This gives $\frac{t^{2}}{a^{2}} + \frac{1}{b^{2}} = 1$, and hence $\frac{1}{b^{2}} = 1 - \frac{t^{2}}{a^{2}} = 1 - \frac{t^{2}}{(1-t)^{2}} = \frac{1-2t}{(1-t)^{2}}$
EADS II 9 The Ellipsoid Algorithm © Harald Räcke 190

The Easy Case

• We want to choose t such that the volume of \hat{E}' is minimal.

 $\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| ,$

where
$$\hat{Q}' = \hat{L}' \hat{L}'^T$$
.

We have

$$\hat{L'}^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & \dots & 0 \\ 0 & \frac{1}{b} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b} \end{pmatrix} \text{ and } \hat{L'} = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

Note that a and b in the above equations depend on t, by the previous equations.

החן הח EADS II	9 The Ellipsoid Algorithm	
UUU©Harald Räcke		195

The Easy Case	
$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot \operatorname{det}(\hat{L}') $ $= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$	
$= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$ $= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$	
$(\sqrt{1-2t})^{n-1}$	
EADS II 9 The Ellipsoid Algorithm © Harald Räcke	196

The Easy Case • We obtain the minimum for $t = \frac{1}{n+1}$. • For this value we obtain $a = 1 - t = \frac{n}{n+1}$ and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$ To see the equation for *b*, observe that $b^2 = \frac{(1-t)^2}{1-2t} = \frac{(1-\frac{1}{n+1})^2}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^2}{\frac{n-1}{n+1}} = \frac{n^2}{n^2-1}$

The Easy Case

Let $\gamma_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2-1}\right)^{n-1}$$

= $\left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$
 $\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$
= $e^{-\frac{1}{n+1}}$

where we used $(1 + x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

This gives $\gamma_n \leq e^{-\frac{1}{2(n+1)}}$.

EADS II © Harald Räcke

│└││││ © Harald Räcke

9 The Ellipsoid Algorithm

199

201

Our progress is the same: $e^{-\frac{1}{2(n+1)}} \leq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$ $= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} = \frac{\operatorname{vol}(f(\bar{E}'))}{\operatorname{vol}(f(\bar{E}))} = \frac{\operatorname{vol}(E')}{\operatorname{vol}(E)}$ Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to Compute the New Ellipsoid

- Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- ► Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center ĉ' and the new matrix Q' for this simplified setting.
- Use the transformations *R* and *f* to get the new center *c'* and the new matrix *Q'* for the original ellipsoid *E*.

	9 The Ellipsoid Algorithm	
UUU GHarald Räcke		200

â ea

 $E^{\hat{E}}$

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x - c) \le 0\};\$

$$f^{-1}(H) = \{f^{-1}(x) \mid a^{T}(x-c) \le 0\}$$

= $\{f^{-1}(f(y)) \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(f(y)-c) \le 0\}$
= $\{y \mid a^{T}(Ly+c-c) \le 0\}$
= $\{y \mid (a^{T}L)y \le 0\}$

This means $\bar{a} = L^T a$.

EADS II © Harald Räcke $\hat{E}' \ \bar{E}'$

The Ellipsoid Algorithm

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1} \Big(\frac{L^T a}{\|L^T a\|} \Big) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1}e_1 = -\frac{1}{n+1}\frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1}L\frac{L^{T}a}{\|L^{T}a\|} + c$$
$$= c - \frac{1}{n+1}\frac{Qa}{\sqrt{a^{T}Qa}}$$

Recall that

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

~

because for a = n/n+1 and $b = n/\sqrt{n^2-1}$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}', \bar{E}' and E' refer to the ellipsoids centered in the origin.

9 The Ellipsoid Algorithm		
	$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\} \\ &= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\} \\ &= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\} \\ &= \{y \mid y^T (\underbrace{R \hat{Q}' R^T}_{\hat{Q}'})^{-1} y \le 1\} \end{split}$	
EADS II © Harald Räcke	9 The Ellipsoid Algorithm	206

9 The Ellipsoid Algorithm

Hence,

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \left(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \right) \\ &= \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \right) \end{split}$$

EADS II 9 The Ellipsoid Algorithm	
	207

9 The Ellipsoid Algorithm

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L\bar{Q}' L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (\underline{L}\bar{Q}' L^T)^{-1} y \le 1\}$$
P The Ellipsoid Algorithm
9 The Ellipsoid Algorithm
208

Algori	thm 1 ellipsoid-algorithm	
1: inp	ut: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$	
2: out	t put: point $x \in K$ or " K is empty"	
3: Q ◄	- ???	
4: rep	eat	
5:	if $c \in K$ then return c	
6:	else	
7:	choose a violated hyperplane <i>a</i>	
8:	$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$	
9:	$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \Big)$	
10:	endif	
11: un	til ???	

Repeat: Size of basic solutions

Lemma 52

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a bounded polyhedron. Let $\langle a_{\max} \rangle$ be the maximum encoding length of an entry in A, b. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \le 2^{2n\langle a_{\max} \rangle + 2n \log_2 n}$.

Note that here we have $P = \{x \mid Ax \le b\}$. The previous lemmas we had about the size of feasible solutions were slightly different as they were for different polytopes.

'nп	٦Г	חר	EADS II © Harald Räcke
	Ш		© Harald Räcke

9 The Ellipsoid Algorithm

211

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, *P* is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

Starting with the ball $E_0 := B(0, R)$ ensures that P is completely contained in the initial ellipsoid. This ellipsoid has volume at most $R^n B(0, 1) \le (n\delta)^n B(0, 1)$.

213

Repeat: Size of basic solutions

Proof:

Let $\bar{A} = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$, $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$, be the matrix and right-hand vector after transforming the system to standard form.

The determinant of the matrices \bar{A}_B and \bar{M}_j (matrix obt. when replacing the *j*-th column of \bar{A}_B by \bar{b}) can become at most

 $\det(\bar{A}_B), \det(\bar{M}_j) \le \|\vec{\ell}_{\max}\|^{2n}$ $\le (\sqrt{2n} \cdot 2^{\langle a_{\max} \rangle})^{2n} \le 2^{2n \langle a_{\max} \rangle + 2n \log_2 n} ,$

where $\vec{\ell}_{max}$ is the longest column-vector that can be obtained after deleting all but 2n rows and columns from \bar{A} .

This holds because columns from I_m selected when going from \overline{A} to \overline{A}_B do not increase the determinant. Only the at most 2n columns from matrices A and -A that \overline{A} consists of contribute.

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop. Let $\langle a_{\max} \rangle$ be the encoding length of the largest entry in A or b.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + rac{1}{\lambda} egin{pmatrix} 1 \ dots \ 1 \end{pmatrix}
ight\} \;,$$

where $\lambda = \delta^2 + 1$.

EADS II © Harald Räcke 9 The Ellipsoid Algorithm

In the following we use $\delta := 2^{2n\langle a_{\max} \rangle + 2n \log_2 n}$.

Let $\bar{A} = \begin{bmatrix} A & -A \\ -A & A \end{bmatrix}$, and $\bar{b} = \begin{pmatrix} b \\ -b \end{pmatrix}$.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

 $\chi_B = \tilde{A}_B^{-1} \tilde{b} + \frac{1}{\lambda} \tilde{A}_B^{-1} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$

(The other *x*-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \leq (\bar{A}_B^{-1}\bar{b})_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix}; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \begin{bmatrix} A & -A \\ -A & A \end{bmatrix} x = \begin{pmatrix} b \\ -b \end{pmatrix} + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\} .$$

P is feasible if and only if \bar{P} is feasible, and P_λ feasible if and only if \bar{P}_λ feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

By Cramers rule we get

$$(\bar{A}_B^{-1}\bar{b})_i < 0 \implies (\bar{A}_B^{-1}\bar{b})_i \le -\frac{1}{\det(\bar{A}_B)_i}$$

and

 $(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{M}_j)$,

where \bar{M}_j is obtained by replacing the *j*-th column of \bar{A}_B by $\vec{1}$.

However, we showed that the determinants of \bar{A}_B and \bar{M}_j can become at most $\delta.$

Since, we chose $\lambda = \delta^2 + 1$ this gives a contradiction.

Lemma 54

If P_{λ} is feasible then it contains a ball of radius $r := 1/\delta^3$. This has a volume of at least $r^n \operatorname{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \operatorname{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let
$$\vec{\ell}$$
 with $\|\vec{\ell}\| \leq r$. Then

 $\begin{aligned} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell} \\ &\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot \gamma \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{aligned}$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

EADS II © Harald Bäcke	9 The Ellipsoid Algorithm	
🛛 🕒 🛛 🖉 © Harald Räcke		219

Algor	ithm 1 ellipsoid-algorithm
1: in	put: point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r
2:	with $K \subseteq B(c, R)$, and $B(x, r) \subseteq K$ for some x
3: οι	Itput: point $x \in K$ or "K is empty"
4: Q	$\leftarrow \operatorname{diag}(R^2, \dots, R^2) // \text{ i.e., } L = \operatorname{diag}(R, \dots, R)$
5: re	peat
6:	if $c \in K$ then return c
7:	else
8:	choose a violated hyperplane <i>a</i>
9:	$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$
0:	$Q \leftarrow \frac{n^2}{n^2 - 1} \Big(Q - \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qaa} \Big)$
11:	endif
12: ui	ntil $det(Q) \le r^{2n}$ // i.e., $det(L) \le r^n$
13· re	turn "K is empty"

How many iterations do we need until the volume becomes too small?

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

$$i > 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

= 2(n+1) ln $\left(n^n \delta^n \cdot \delta^{3n}\right)$
= 8n(n+1) ln(δ) + 2(n+1)n ln(n)
= $\mathcal{O}(\operatorname{poly}(n, \langle a_{\max} \rangle))$
PThe Ellipsoid Algorithm

Separation Oracle:

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- certifies that $x \in K$,
- or finds a hyperplane separating *x* from *K*.

We will usually assume that \boldsymbol{A} is a polynomial-time algorithm.

In order to find a point in *K* we need

- a guarantee that a ball of radius r is contained in K,
- an initial ball B(c, R) with radius R that contains K,
- a separation oracle for *K*.

The Ellipsoid algorithm requires $O(\text{poly}(n) \cdot \log(R/r))$ iterations. Each iteration is polytime for a polynomial-time Separation oracle.

10 Karmarkars Algorithm

- inequalities $Ax \leq b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^\circ$ define

 $s_i(x) := b_i - a_i^T x$

as the slack of the *i*-th constraint

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^m \log(s_i(x))$$

Penalty for point x; points close to the boundary have a very large penalty.

Gradient and Hessian

Taylor approximation:

$$\phi(x+\epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_{x} := \nabla^{2} \phi(x) = \sum_{i=1}^{m} \frac{1}{s_{i}(x)^{2}} a_{i} a_{i}^{T} = A^{T} D_{x}^{2} A$$

with $D_x = \operatorname{diag}(d_x)$.

picture of barrier fu	inction	
EADS II © Harald Räcke	10 Karmarkars Algorithm	224

$$\frac{\partial \phi(x)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(-\sum_r w_r \ln(s_r(x)) \right)$$
$$= -\sum_r w_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right)$$
$$= -\sum_r w_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right)$$
$$= -\sum_r w_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right)$$
$$= \sum_r w_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right)$$
$$= \sum_r w_r \frac{1}{s_r(x)} A_{ri}$$

The *i*-th entry of the gradient vector is $\sum_r w_r/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} w_r / s_r(x) a_r = A^T D_x W \vec{1}$$

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{w_r}{s_r(x)} A_{ri} \right) = \sum_r w_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r w_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri}A_{rj} = (A^{T}A)_{ij}$. Adding the additional factors $w_{r}/s_{r}(x)^{2}$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_{\chi} = A^T D W D A$$

Dilkin Ellipsoid

$$E_{x} = \{ y \mid (y - x)^{T} H_{x} (y - x) \leq 1 \} = \{ y \mid ||y - x||_{H_{x}} \leq 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{x}(y - x) = (y - x)^{T} A^{T} D_{x}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T}(y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$\leq 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

 H_x is positive semi-definite for $x \in P^\circ$

 $\boldsymbol{u}^T \boldsymbol{H}_{\boldsymbol{X}} \boldsymbol{u} = \boldsymbol{u}^T \boldsymbol{A}^T \boldsymbol{D}_{\boldsymbol{X}}^2 \boldsymbol{A} \boldsymbol{u} = \|\boldsymbol{D}_{\boldsymbol{X}} \boldsymbol{A} \boldsymbol{u}\|_2^2 \ge 0$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_{χ} is positive definite for $\chi \in P^{\circ}$

 $u^{T}H_{x}u = \|D_{x}Au\|_{2}^{2} > 0$ for $u \neq 0$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

EADS II © Harald Räcke

10 Karmarkars Algorithm

Analytic Center

 $x_{ac} := \arg \min_{x \in P^{\circ}} \phi(x)$ • x_{ac} is solution to $\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$ • depends on the description of the polytope • x_{ac} exists and is unique iff P° is nonempty and bounded

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path: Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

	10 Karmarkars Algorithm	
🛛 🕒 🖓 © Harald Räcke		232

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$ (force field interpretation).

This means

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t(b_i - a_i^T x^*(t))}$

 $tc + \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x^*(t)} = 0$

- $z_i^*(t)$ is strictly dual feasible
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if this gap is less than $1/\Omega(2^L)$ we can snap to an optimum point

Centering Problem minimize $f_t(x) = tc^T x + \phi(x)$ minimizing this gives point $x^*(t)$ on central path

Path-following Methods

Algorithm 1 PathFollowing

- 1: start at analytic center
- 2: while solution not good enough do
- 3: make step to improve objective function
- 4: recenter to return to central path

Questions/Remarks

- how do we get to analytic center?
- when is solution "good enough"?
- (usually) improvement step tries to stay feasible, how?
- recentering step should
 - be fast
 - not undo (too much of) improvement

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H^{-1}\nabla f_t(x)$$

= $-H^{-1}(tc + \nabla \phi(x))$
= $-(A^T D_x^2 A)^{-1}(tc + A^T d_x)$

Newton Iteration:

$$x := x + \Delta x_{nt}$$

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

- $\lambda_t(x) = 0$ iff $x = x^*(t)$
- $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Convergence of Newtons Method

Theorem 55 If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\lambda_t(x_+) \le \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

feasibility:

 λ_t(x) = ||∆x_{nt}|| < 1; hence x₊ lies in the Dilkin ellipsoid around x. bound on $\lambda_t(x^+)$: we use $D := D_x = \operatorname{diag}(d_x)$ and $D_+ := D_{x^+} = \operatorname{diag}(d_{x^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality

$$|a^{2}\| + ||a + b||^{2} = a^{T}a + (a^{T} + b^{T})(a + b)$$

= $(a^{T} + b^{T})a + a^{T}(a + b) + b^{T}b = ||b||^{2}$

```
if a^T(a+b) = 0.
```

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

= $D(b - Ax - (b - Ax^{+}))$
= $D(D^{-1}\vec{1} + D^{-1}\vec{1})$
= $(I - D_{+}^{-1}D)\vec{1}$

 $a^T(a+b)$

$$= \Delta x_{\text{nt}}^{+T} A^T D_+ \left(D_+ A \Delta x_{\text{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\text{nt}} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(A^T D_+^2 A \Delta x_{\text{nt}}^+ - A^T D^2 A \Delta x_{\text{nt}} + A^T D_+ D A \Delta x_{\text{nt}} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(H_+ \Delta x_{\text{nt}}^+ - H \Delta x_{\text{nt}} + A^T D_+ \vec{1} - A^T D \vec{1} \right)$$

$$= \Delta x_{\text{nt}}^{+T} \left(-\nabla f_t (x^+) + \nabla f_t (x) + A^T D_+ \vec{1} - A^T D \vec{1} \right)$$

$$= 0$$

bound on $\lambda_t(x^+)$: we use $D := D_x = \text{diag}(d_x)$ and $D_+ := D_{x^+} = \text{diag}(d_{x^+})$ $\lambda_t(x^+)^2 = \|D_+A\Delta x_{nt}^+\|^2$ $\leq \|D_+A\Delta x_{nt}^+\|^2 + \|D_+A\Delta x_{nt}^+ + (I - D_+^{-1}D)DA\Delta x_{nt}\|^2$ $= \|(I - D_+^{-1}D)DA\Delta x_{nt}\|^2$ $= \|(I - D_+^{-1}D)DA\Delta x_{nt}\|^2$

$$= \| (I - D_{+} D)^{T} \|^{4}$$

$$\leq \| (I - D_{+}^{-1} D)^{T} \|^{4}$$

$$= \| DA \Delta x_{\mathsf{nt}} \|^{4}$$

$$=\lambda_t(x)^4$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} + D^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a + b)$$

$$= \Delta x_{nt}^{+T}A^{T}D_{+}\sqrt{W}(\sqrt{W}D_{+}A\Delta x_{nt}^{+} + (I - D_{+}^{-1}D)\sqrt{W}DA\Delta x_{nt}))$$

$$= \Delta x_{nt}^{+T}(A^{T}D_{+}WD_{+}A\Delta x_{nt}^{+} - A^{T}DWDA\Delta x_{nt} + A^{T}D_{+}WDA\Delta x_{nt}))$$

$$= \Delta x_{nt}^{+T}(H_{+}\Delta x_{nt}^{+} - H\Delta x_{nt} + A^{T}D_{+}W\vec{1} - A^{T}DW\vec{1})$$

$$= \Delta x_{nt}^{+T}(-\nabla f_{t}(x^{+}) + \nabla f_{t}(x) + A^{T}D_{+}W\vec{1} - A^{T}DW\vec{1})$$

$$= 0$$

gradient of
$$f_{t^+}$$
 at ($x = x^*(t)$)

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\begin{split} \lambda_{t^{+}}(x)^{2} &= (\nabla f_{t^{+}}(x))^{T} H^{-1} \nabla f_{t^{+}}(x) \\ &= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{X} A \\ &\leq (\mu - 1)^{2} m \\ &= 1/4 \end{split}$$

This means we are in the range of quadratic convergence!!!

How to start...

a damped Newton iteration goes in the direction of Δx_{nt} but only so far as to not leave the polytope;

Lemma 56 (without proof)

A damped Newton iteration starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

 $\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log \log(1/\delta))$

iterations.

This will allow us to quickly reach a point on the central path $(t \approx 2^L)$ when starting very close to it (e.g. at the analytic center).

Number of Iterations

the number of Newton iterations per outer iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \ge \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

 $\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$

We show how to get a starting point with $t_0 = 1/2^L$. Together with $\epsilon \approx 2^L$ we get $\mathcal{O}(L_{\sqrt{m}})$ iterations.

EADS II © Harald Räcke

EADS II

∏∐∏∏∐ ©Harald Räcke

10 Karmarkars Algorithm

248

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \rightarrow b + \frac{1}{\lambda} \cdot \vec{1}$, where L = L(A, b) (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

After, re-normalizing A and b (for integrality) we have that the point x_0 is at distance at least 1 from every constraint.

The determinant of the matrix A_B for a basis *B* went up by a factor of 2^{2nL} .

How to reach the analytic center?

Start at x_0 .

Choose $c' := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for c' and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{nL}$. This requires \sqrt{mnL} outer iterations.

Let $x_{c'}$ denote this point.

Let x_c denote the point that minimizes

 $t \cdot c^T x + \phi(x)$

(i.e., same value for t but different c, hence, different central path).

	10 Karmarkars Algorithm	
UUU GHarald Räcke		251

```
\begin{aligned} t \cdot c^T x_{\hat{c}} + \phi(x_{\hat{c}}) &\leq t \cdot c^T x_{\hat{c}} + \phi(x_{\hat{c}}) + t \cdot \hat{c}^T x_{\hat{c}} \\ &\leq t \cdot c^T x_{\hat{c}} + \phi(x_c) + t \cdot \hat{c}^T x_c \\ &\leq t \cdot c^T x_c + \phi(x_c) + t \cdot \left(c^T x_{\hat{c}} + \hat{c}^T x_c\right) \\ &\leq t \cdot c^T x_c + \phi(x_c) + 2t 2^{\langle c_{\max} \rangle} 2^{nL} \end{aligned}
```

Choosing $t = 1/2^{\Omega(nL)}$) gives that the last term becomes very small. Hence, using damped Newton we can move to a point on the new central path (for *c*) quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}nL)$ outer iterations for the whole algorithm.

10 Karmarkars Algorithm

One interation can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.

EADS II © Harald Räcke

