Part Il

Approximation Algorithms

.
‘m EADS Il
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

m EADS Il 11 Introduction =) =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?

‘m EADS Il 11 Introduction =) =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

‘m EADS Il 11 Introduction =) =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

» Exploit special structure of instances occurring in practise.

‘m EADS Il 11 Introduction =] =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.
» Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.

‘m EADS Il 11 Introduction =] =
©Harald Racke

Definition 2

An x-approximation for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of « of the

value of an optimal solution.

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

m EADS Il 11 Introduction
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

‘m EADS Il 11 Introduction
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

‘m EADS Il 11 Introduction
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

» It gives a rigorous mathematical base for studying
heuristics.

» |t provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?
» Sometimes the results are very pessimistic due to the fact
that an algorithm has to provide a close-to-optimum
solution on every instance.

m EADS Il 11 Introduction
©Harald Racke

Definition 3
An optimization problem P = (7, sol, m, goal) is in NPO if
» x €7 can be decided in polynomial time

v

v € sol(7) can be verified in polynomial time

» m can be computed in polynomial time

v

goal € {min, max}

In other words: the decision problem is there a solution y with
m(x,y) at most/at least z is in NP.

‘m EADS Il 11 Introduction =] =
©Harald Racke

> x is problem instance
» v is candidate solution

» m*(x) cost/profit of an optimal solution

Definition 4 (Performance Ratio)

m(x,y) m*(x)

R,y = maxj(m*(x) ' m(x,y)

|

m EADS Il 11 Introduction
©Harald Racke

Definition 5 (r-approximation)
An algorithm A is an r-approximation algorithm iff

Vx el:R(x,Ax)) <1,

and A runs in polynomial time.

m EADS Il 11 Introduction
©Harald Racke

Definition 6 (PTAS)
A PTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x]|.

approximation with arbitrary good factor... fast?

‘m EADS Il 11 Introduction =]
©Harald Racke

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule
the jobs on n machines such that the MAKESPAN is minimized.

‘m EADS Il 11 Introduction =]
©Harald Racke

Definition 7 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes
as input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x| and 1/€.

approximation with arbitrary good factor... fast!

‘m EADS Il 11 Introduction
©Harald Racke

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
subset of total weight at most W s.t. the profit is maximized.

‘m EADS Il 11 Introduction =]
©Harald Racke

Definition 8 (APX - approximable)
A problem P from NPO is in APX if there exist a constant v > 1
and an r-approximation algorithm for P.

constant factor approximation...

‘m EADS Il 11 Introduction =)
©Harald Racke

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint
pieces A and B s.t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the
variables that satisfies the maximum number of clauses.

‘m EADS Il 11 Introduction =]
©Harald Racke

Problems with polylogarithmic approximation guarantees
» Set Cover

» Minimum Multicut
» Sparsest Cut

» Minimum Bisection

There is an r-approximation with » < ©(log®(|x|)) for some
constant c.

Note that only for some of the above problem a matching lower
bound is known.

‘m EADS Il 11 Introduction =] =
©Harald Racke

There are really difficult problems!

m EADS Il 11 Introduction
©Harald Racke

There are really difficult problems!

Theorem 9

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

‘m EADS Il 11 Introduction =]
©Harald Racke

There are really difficult problems!

Theorem 9

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

‘m EADS Il 11 Introduction =]
©Harald Racke

There are weird problems!
Asymmetric k-Center admits an @ (log™ n)-approximation.

There is no o(log™ n)-approximation to Asymmetric k-Center
unless NP ¢ DTIME (nlogloglogn)

‘m EADS Il 11 Introduction =]
©Harald Racke

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P
admits a 4-approximation.

One only says that a problem is APX-hard.

‘m EADS Il 11 Introduction
©Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

‘m EADS Il 12 Integer Programs = =
©Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for
maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a
vital role in the design of many approximation algorithms.

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Definition 10
An Integer Linear Program or Integer Program is a Linear
Program in which all variables are required to be integral.

m EADS I 12 Integer Programs
©Harald Racke

Definition 10
An Integer Linear Program or Integer Program is a Linear
Program in which all variables are required to be integral.

Definition 11
A Mixed Integer Program is a Linear Program in which a subset
of the variables are required to be integral.

‘m EADS Il 12 Integer Programs =)
©Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

‘m EADS Il 12 Integer Programs =)
©Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is
NP-complete!

‘m EADS Il 12 Integer Programs =
©Harald Racke

Set Cover

Given a ground set U, a collection of subsets Sy,...,Sy € U,
where the i-th subset S; has weight/cost w;. Find a collection
I<{1,...,k} such that

YueU3diel: ues; (every element is covered)

and
Z w; is minimized.
iel

‘m EADS Il 12 Integer Programs =)
©Harald Racke

Set Cover

T

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

[T

. .
. 0
oo .) .)
. oo .
.)
. .
K 0 . .
o‘o oo
3 o o o o
0 .
o o o . .
. .
. 0
. .
. eele oo
oo 0
.)
0 .
0
o o o o oo
. .
EADS Il 12 Integer Programs =

©Harald Racke

Set Cover

T

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

L)
L] L] L]
(] . L] . L]
L) L]
. (] o0
LN] .
L))
.
L L] L]
o0 (]
L] L] L]
L]
L] L]
L] L]
(] .
L] L]
L] LN) e
. o0
LR N] L]
L] LN]
L] L[]
L] L]
(] (]
L] L] L] L] L] L]
LN L] L]

T

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

. .
.)
) . .
. o o
. .
.) .
L] L] L]
) .
o o .
. . o o
oo . .
. . . .
. . . .
o o o
. . .
) . o o
. . . .
. . eee)
o eee . oo .
eee . .
)) .
.) .) eee
. . o o o o
. .) . .
. . o o o o o o .
oo o o oo . .
EADS Il 12 Integer Programs =] E

©Harald Racke

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il

©Harald Racke

12 Integer Programs

@ <

Set Cover

EADS Il

©Harald Racke

12 Integer Programs

@ <

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

IP-Formulation of Set Cover

min > WiXg
s.t. VueuU Xiyes Xi
Vie{l,...,k} Xi
Vie{l,...,k} Xi

=
=

integral

m EADS I 12 Integer Programs
©Harald Racke

Vertex Cover

Given a graph G = (V, E) and a weight w, for every node. Find a
vertex subset S < V of minimum weight such that every edge is
incident to at least one vertex in S.

‘m EADS Il 12 Integer Programs = =
©Harald Racke

IP-Formulation of Vertex Cover

min Dvev WuXy
st. Ve=(i,j) €E Xi+ Xj
Vv evVv Xy

> 1
e {0,1}

m EADS I 12 Integer Programs
©Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex
is incident to more than one edge.

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.

Find a subset of edges of maximum weight such that no vertex
is incident to more than one edge.

max D ecE WeXe
st. YVveV DiceXe =< 1
Ve e E x. € {0,1}

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

‘m EADS Il 12 Integer Programs =) =
©Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.

Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

max > vey WyXy
s.t. Ve=(i,j)€E xi+x; =< 1

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight
wj and profit p;, and given a threshold K. Find a subset

I <{1,...,n} of items of total weight at most K such that the
profit is maximized.

‘m EADS Il 12 Integer Programs =
©Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight
wj and profit p;, and given a threshold K. Find a subset

I <{1,...,n} of items of total weight at most K such that the
profit is maximized.

max L1pixi
s.t. Stiwixi < K
Vie{l,...,n} x; € {0,1}

‘m EADS Il 12 Integer Programs =
©Harald Racke

Relaxations

Definition 12

A linear program LP is a relaxation of an integer program IP if
any feasible solution for IP is also feasible for LP and if the
objective values of these solutions are identical in both
programs.

‘m EADS Il 12 Integer Programs =
©Harald Racke

Relaxations

Definition 12

A linear program LP is a relaxation of an integer program IP if
any feasible solution for IP is also feasible for LP and if the
objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing x; € [0, 1]
instead of x; € {0, 1}.

‘m EADS Il 12 Integer Programs =
©Harald Racke

By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization
problem.

‘m EADS Il 12 Integer Programs =
©Harald Racke

Relations

Maximization Problems:

| OPT(DUAL) |

| FEASIBLE(DUAL) |

X

Minimization Problems:

‘FEASIBLE(DUAL) \ \ OPT(DUAL) \

00

‘m EADS Il 12 Integer Programs
©Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

‘m EADS Il 13.1 Deterministic Rounding =) =
©Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zé‘:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zif:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {fy,} be the maximum
frequency.

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.

m EADS Il 13.1 Deterministic Rounding =)
©Harald Racke

Technique 1: Round the LP solution.

Lemma 13
The rounding algorithm gives an f-approximation.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

‘m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 13

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.

‘m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 13
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

Lemma 13
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

v

We know that >, cq, x; = 1.

v

The sum contains at most f;, < f elements.

v

v

This set will be selected. Hence, u is covered.

Therefore one of the sets that contain u must have x; > 1/f.

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

D wi

iel

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1
= f - cost(x)

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

icl i=1
= f - cost(x)
<f-OPT.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:uESi x;i=1
x;i =0

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2ueU Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
x;i =0 YVu = 0
13.2 Rounding the Dual a =

©Harald Racke

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;

‘m EADS Il 13.2 Rounding the Dual =) =
©Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 14
The resulting index set is an f-approximation.

m EADS II 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.
Lemma 14
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.
Lemma 14
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

‘m EADS Il 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 14
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

» This means >, cs, Yu < w; for all sets S; that contain u.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 14
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.

‘m EADS Il 13.2 Rounding the Dual = =
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

iel

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

=>iel:uesS} yu
u

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel uues;

=>iel:uesS} yu
u

= quyu

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS} yu
u
Squyu
u

Sfzyu

m EADS II 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS} yu
u
Squyu
u
Sfzyu
u

< fcost(x™*)

m EADS II 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
=>Hiel:ueSi} - yu
u
= quyu
m
= fzyu
u

< fcost(x™*)
< f-OPT

m EADS II 13.2 Rounding the Dual
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

‘m EADS Il 13.2 Rounding the Dual
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second

algorithm. Then
Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

v

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

Suppose that we take S; in the first algorithm. l.e., i € I.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

‘m EADS Il 13.3 Primal Dual Technique =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

‘m EADS Il 13.3 Primal Dual Technique =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

‘m EADS Il 13.3 Primal Dual Technique =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

‘m EADS Il 13.3 Primal Dual Technique = =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.

‘m EADS Il 13.3 Primal Dual Technique = =
©Harald Racke

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1y <0

210

3: while exists u ¢ (J;<; S; do

4 increase dual variable y; until constraint for some
new set Sy becomes tight

I—Tu{{¥}

v

T

EADS Il 13.3 Primal Dual Technique =)
©Harald Racke

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

]

S~ §; forall j

while I not a set cover do
¢ —argmin; ., I%JI
I-1u{¥}
Sj—S;j—S; forallj

A vl AW N~

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.

‘m EADS Il 13.4 Greedy =]
©Harald Racke

Technique 4: The Greedy Algorithm

Lemma 15
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

. a; ics Ai a;
mm—l<72165 ! < max -

i bi Xiesbi i by

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wy
min —
J 185

‘m EADS Il 13.4 Greedy =) =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W W
min 1 < 2.jeoPT vj
i 1851 Xjeort 1)l

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi 2jeopT W) OPT
min . < = <
i 181 Xjeort ISj1 Xjcopr IS

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT

min —— < o <
i 1S5l Z.jGOPT|Sj| zjeopT|Sj| Ny

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT
min —— < o <
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —% < J -
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§j|.

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§’j|.

B IS;IOPT nyp—ny,,
oy ng

- OPT

wj

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

D wj

Jjel

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

S
ny —n
ijg TR opT
jeI {=1

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

=H, - OPT < OPT(Inn +1) .

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

A tight example:

m EADS Il 13.4 Greedy &
©Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

[T

EADS Il
©Harald Racke

13.5 Randomized Rounding

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[(1-xj)

j:’I/LESj

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=[] Q=-xp) =< [] e

j:’I/LESj j:‘uESj

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e* Zj:uGSj Xj

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e*Zj:ueijj < 671

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[(1-xj) < 1_[e Xi

j:uESj j:ueSj

_ e*Zj:uEijj < 671 .

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0

‘m EADS Il 13.5 Randomized Rounding
©Harald Racke

[T

EADS Il
©Harald Racke

13.5 Randomized Rounding

Pr[3u € U not covered after £ round]

m EADS II 13.5 Randomized Rounding
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]

m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u» not covered Vv

< ZPr[ui not covered after € rounds]
i

...V Uy not covered]

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 16
With high probability O (logn) rounds suffice.

m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 16
With high probability O (logn) rounds suffice.

With high probability:
For any constant & the number of rounds is at most O(logn)
with probability at least 1 — n~«.

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

Proof: We have

Pr[#rounds > (« + 1) Inn] < ne-(@rinn —

n—O(

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Expected Cost

> Version A.
Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost]

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~«

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

‘m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1
< mlz‘[cost] < m((x +1)Inn - cost(LP)

T

EADS I 13.5 Randomized Rounding & =
©Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ(+ 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

T

EADS Il 13.5 Randomized Rounding & =
©Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ(+ 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

form=2and x> 1.

T

EADS I 13.5 Randomized Rounding & =
©Harald Racke

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

‘m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 17 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
2poly(logn))_

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

v

n=2k_-1
Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

Sy =1{x|xTy =1}

each set contains 2¥~1 vectors; each vector is contained in

T

2k=1 sets
1 2 . . .
> Xi = kT = 41 is fractional solution.
EADS Il 13.5 Randomized Rounding =) = =

©Harald Racke

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Techniques:

>

>

>

Deterministic Rounding
Rounding of the Dual
Primal Dual

Greedy

Randomized Rounding
Local Search

Rounding Data + Dynamic Programming

T

EADS Il 13.5 Randomized Rounding
©Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =) =
©Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi X;pj-xj; < L
Vjobs j >ixji=1
Vi, j xji € {0,1}

Here the variable x; ; is the decision variable that describes
whether job j is assigned to machine 1i.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

m EADS Il 14 Scheduling on Identical Machines: Local Search =) =
©Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

Clearly
3
Chax = mjax P

as the longest job needs to be scheduled somewhere.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % Zj pj.

m EADS I 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2.jiPj-

Therefore, .
Cl‘T‘laX = % %: pj

m EADS II 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Local Search

©Harald Racke

14 Scheduling on Identical Machines: Local Search

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search for Scheduling

m EADS I 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

REPEAT

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Local Search Analysis

m EADS I 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

Let Sy be its start time, and let Cy be its completion time.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.
Let Sy be its start time, and let Cy be its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule

would not be locally optimal.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search
©Harald Racke

[T

EADS Il
©Harald Racke

14 Scheduling on Identical Machines: Local Search

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

m EADS I 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

‘m EADS I 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
pe+— 2. pj
m “

j#l

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

w+EZv]=(1——)m+vaJ
j#l

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
W+*Zv1=(1—*)ve+*2v1 (2 = —) Cinax
mj#{) m

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

A Tight Example

Se
pemSet T
ALG _Sp+pr 2Fmi _, L
OPT Py 1+ -1 m

m-1

A Greedy Strategy

m EADS I 15 Scheduling on Identical Machines: Greedy
©Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill
the local optimally condition of our local search algorithm.
Hence, these also give 2-approximations.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

A Greedy Strategy

Lemma 18

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

Proof:

> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =)
©Harald Racke

Proof:
> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

Proof:

> Let p; > - - - = p, denote the processing times of a set of

jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

» If py < Ch.x/3 the previous analysis gives us a schedule
length of at most

4
Chax +Pn < =Clax -

3

T

EADS 1l

15 Scheduling on Identical Machines: Greedy
©Harald Racke

Proof:
> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

» If py < Ch.x/3 the previous analysis gives us a schedule
length of at most

4
CI?I&X + Pn =< §CI>'I<1aX .
Hence, pyn > Ch.x/3.

» This means that all jobs must have a processing time
> Chax/3-

T

EADS Il

15 Scheduling on Identical Machines: Greedy
©Harald Racke

Proof:

> Let p; = - - - = p,, denote the processing times of a set of

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
Chax +Pn < =Clax -

3
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle
at most two jobs.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

Proof:

> Let p; = - - - = p,, denote the processing times of a set of

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
Cfrklax + Pn =< §CI>'I<18.X .
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle
at most two jobs.

For such instances Longest-Processing-Time-First is optimal.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

When in an optimal solution a machine can have at most 2 jobs
the optimal solution looks as follows.

P14 P13 pi2 P11 P10 P9 P38

P1 p2 pP3 P4 Ps Pe6 p7

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

» We can assume that one machine schedules p; and p,, (the
largest and smallest job).

T

EADS Il 15 Scheduling on Identical Machines: Greedy & =
©Harald Racke

» We can assume that one machine schedules p; and p,, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

T

EADS I

15 Scheduling on Identical Machines: Greedy
©Harald Racke

» We can assume that one machine schedules p; and p, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =)
©Harald Racke

» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and py, on one machine and p4 and pp on the other,
cannot increase the Makespan.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and py, on one machine and p4 and pp on the other,
cannot increase the Makespan.

» Repeat the above argument for the remaining machines.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

Tight Example

» 2m + 1 jobs

©Harald Racke

15 Scheduling on Identical Machines: Greedy

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

‘m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Traveling Salesman

Given a set of cities ({1,...,7}) and a symmetric matrix

C = (cij), cij = 0 that specifies for every pair (i, j) € [n] x [n]
the cost for travelling from city i to city j. Find a permutation 1t
of the cities such that the round-trip cost

n-1

Cn()m(n) + z Crr(i)m(i+1)
i=1

is minimized.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 19
There does not exist an O (2™)-approximation algorithm for TSP.

‘m\ EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 19
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 19

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 19

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 19

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 19

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

» An O(2")-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.

m EADS Il 16 TSP & =
©Harald Racke

Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

©Harald Racke

Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

It is convenient to view the input as a complete undirected graph
G = (V,E), where ¢;; for an edge (i, j) defines the distance
between nodes i and j.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 20

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

‘m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 20

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 20

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 20

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

» This gives a spanning tree of cost at most OPTsp(G).

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

‘m\ EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

» Repeat until all nodes have been processed.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

G

.
m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

® ®@
@)
\}.

.
m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

® ®
.
66

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

©Harald Racke

TSP: Greedy Algorithm

©Harald Racke

TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are
taken in Prims algorithm.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.

©Harald Racke

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € Sj.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

Lemma 21
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

This increases the cost by

Csi,vg T Cuyry = Copry = ZCSi,Ui

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

Hence,
> Csivi = OPTusT(G)

1

which with the previous lower bound gives a 2-approximation.

m EADS Il 16 TSP & =
©Harald Racke

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

‘M\ EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

‘m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach
Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

m EADS Il 16 TSP & =
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c(e)

ecE’

> Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.

m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

> Find an Euler tour of G'.
» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

13

QY
~

Y

14

©Harald Racke

16 TSP

TSP: A different approach

13

QY
~

Y

14

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

Q > /

10
1
>
2)

@
H
)
O

o 13
<+

©Harald Racke

16 TSP

TSP: A different approach

Q > /

10
1
>
2)

(@)
o D
O

o 13
<+

©Harald Racke

16 TSP

TSP: A different approach

C 9 :/-\]3:
10
<
. —
] o
() >
> (2)
5 D
®

©Harald Racke

TSP: A different approach

C 9 /:/-\ 1

10
(2
1 y
() &
- (2)
o)
®

3,
>
<
s

©Harald Racke

TSP: A different approach

C 9 >]3:
10
<
G —
] o
() %
> (2)
e
®

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

‘m EADS Il 16 TSP & =
©Harald Racke

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

Hence, short-cutting gives a tour of cost no more than
2 - OPTysT(G) which means we have a 2-approximation.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

@

.
©Harald Racke

16 TSP

TSP: Can we do better?

©Harald Racke

16 TSP

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

‘M\ EADS Il 16 TSP &
©Harald Racke

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd
degree vertices in the MST (note that there are an even number
of them).

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

©Harald Racke

16 TSP

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

‘M\ EADS Il 16 TSP &
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

However, the edges of this tour give rise to two disjoint

matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTr1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

This is the best that is known.

m EADS Il 16 TSP & =
©Harald Racke

Christofides. Tight Example

» optimal tour: n edges.
» MST: n — 1 edges.
» weight of matching (n+1)/2 -1

» MST+matching = 3/2-n

©Harald Racke

Tree shortcutting. Tight Example

€

[T

» edges have Euclidean distance.

©Harald Racke

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a
subset I < {1,...,n} of items of total weight at most W such
that the profit is maximized (we can assume each w; < W).

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a
subset I < {1,...,n} of items of total weight at most W such
that the profit is maximized (we can assume each w; < W).

max St piXi
s.t. z?:l wix; < W
Vie{l,...,n} x; € {0,1}

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1) < [(0,0), (p1,w1)]

2: forj —2 to ndo

3 A(j) = A(G-1)

4 for each (p,w) € A(j—1) do
5 if w+wj<W then
6

7

8:

add (p + pj,w +wj) to A(j)
remove dominated pairs from A(j)
return maxy w)eam) P

The running time is O(n - min{W,P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Definition 22
An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the

input is encoded in unary.

‘m EADS Il 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.

m EADS II 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
> Set u:=€eM/n.

m EADS II 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
> Set u:=€eM/n.
» Set p;:=|pi/u] forall i.

m EADS II 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

‘m EADS II 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

O(nP")

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP) =0(n p})

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP') =0(n3 pj)=0(n3, [ez\?ﬁj)

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

ompP)=0(nY pi)=0n>, [d\’;ﬁj) < 0(":) .

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

m EADS Il 17.1 Knapsack =) =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS

m EADS Il 17.1 Knapsack =) =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

=H2 i

ieS

=H2 P

ieO

T

EADS Il
©Harald Racke

17.1 Knapsack & =

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

=H2 i
[ISNY
=H 2 P
i€0

> > pi—10lu
ie0

T

EADS Il
©Harald Racke

17.1 Knapsack & =

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=H 2 P
i€O
> pi—lOlu
ie0

> pi—npu
ieO

%

%

‘m EADS Il 17.1 Knapsack =) =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

D.Piz U P
ieS €S
=H 2 P

i€0
> pi—lOlu
i€0
>, pi—np
i€0

> pi—eM
ie0

%

%

T

EADS Il
©Harald Racke

17.1 Knapsack & =

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS
=p D p;
i€O
> > pi—10lu
i€eO
> > pi-nu
ie0
=D pi—€eM
i€eO
> (1 -€)OPT .

‘m EADS Il 17.1 Knapsack =) =
©Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j#l

where £ is the last job to complete.

‘m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j=t

where £ is the last job to complete.

Together with the obervation that if each p; > %ngax then LPT is
optimal this gave a 4/3-approximation.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

m EADS I 17.2 Scheduling Revisited
©Harald Racke

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

pj—kmz pi

m EADS I 17.2 Scheduling Revisited
©Harald Racke

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

p]—kmz pi

Idea:

1. Find the optimum Makespan for the long jobs by brute
force.

‘m EADS I 17.2 Scheduling Revisited =
©Harald Racke

17.2 Scheduling Revisited
Partition the input into long jobs and short jobs.

A job jis called short if

p]—kmz pi

Idea:
1. Find the optimum Makespan for the long jobs by brute

force.
2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

17.2 Scheduling Revisited

©Harald Racke

We still have the inequality

1
— 2 pj+py
j=l

where £ is the last job (this only requires that all machines are
busy before time S)).

‘m EADS II 17.2 Scheduling Revisited =
©Harald Racke

We still have the inequality

1
o 2 Pit P
j=l
where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it
consists of an optimal schedule of long jobs plus a schedule for
short jobs.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

We still have the inequality

1
— 2 pj+py
j=l

where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it
consists of an optimal schedule of long jobs plus a schedule for
short jobs.

If £ is a short job its length is at most

pe <. pjl(mk)

which is at most C./k.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Hence we get a schedule of length at most

(1+ %)c;;ax

m EADS II 17.2 Scheduling Revisited
©Harald Racke

Hence we get a schedule of length at most

(1+ %)c;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on 11 machines is at most
mKk™_ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Hence we get a schedule of length at most

(1+ %)C;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mkm, which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 23

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [é].

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

How to get rid of the requirement that m is constant?

m EADS I 17.2 Scheduling Revisited
©Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

‘m EADS II 17.2 Scheduling Revisited
©Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 +)T or
certifies that no schedule of length at most T exists (assume

T>*Z]l]1)

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 +)T or
certifies that no schedule of length at most T exists (assume

T>*ijj)

We partition the jobs into long jobs and short jobs:
» Ajobis long if its size is larger than T/k.
» Otw. it is a short job.

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

» We round all long jobs down to multiples of T/k?.

T

EADS Il 17.2 Scheduling Revisited
©Harald Racke

» We round all long jobs down to multiples of T/k?.

> For these rounded sizes we first find an optimal schedule.

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» We round all long jobs down to multiples of T/k?.
> For these rounded sizes we first find an optimal schedule.

> If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

T

EADS Il 17.2 Scheduling Revisited =) =
©Harald Racke

v

We round all long jobs down to multiples of T/k2.

v

For these rounded sizes we first find an optimal schedule.

\4

If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

\4

If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.

T

EADS 1l 17.2 Scheduling Revisited =) =
©Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

‘m EADS I 17.2 Scheduling Revisited = =
©Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at

most 1
(1 n E)T .

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.

‘m EADS I 17.2 Scheduling Revisited = =
©Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that

the new load is at most

T+

=~
|

—
—
+
| =
S—
ﬂ

‘m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.

Therefore the number of different inputs is at most nk®
(described by a vector of length k? whgre, the i-th entry
describes the number of jobs of size k—lzT). This is polynomial.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k? where, the i-th entry
describes the number of jobs of size kii_,T). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There
are only (k + 1)K different vectors.

m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k? where, the i-th entry
describes the number of jobs of size kii_,T). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There
are only (k + 1)K different vectors.

This means there are a constant number of different machine
configurations.

m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are

required to schedule input vector (n,..
most T.

., Ng2) with Makespan at

m EADS I 17.2 Scheduling Revisited
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

‘m EADS I 17.2 Scheduling Revisited = =
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (1’l1,...,1’lk2)=0
_J 1+ min OPT(m; —5S1,...,M2 — Sg2) (M1,...,Mp2) 2 0
(81,..08,2)EC
00 otw.

where C is the set of all configurations.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (1’l1,...,1’lk2)=0
_J 1+ min OPT(n;—s1,...,n2 —Sk2) (M1,...,n2) 20
(81,..08,2)EC
00 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1)K nk* ~ (nk)¥*.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.

‘m EADS II 17.2 Scheduling Revisited =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?

‘m EADS II 17.2 Scheduling Revisited = =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

Theorem 24
There is no FPTAS for problems that are strongly NP-hard.

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

» Weset k:=[2nq(n)] = 20PT

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)
» Weset k:=[2nq(n)] = 20PT

» Then

1 1
ALG < (1 + E> OPT < OPT +;

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

We set k := [2ngq(n)] = 2 OPT
Then

v

v

1 1
ALG < (1 + E> OPT < OPT +;

v

But this means that the algorithm computes the optimal
solution as the optimum is integral.

T

EADS 1l 17.2 Scheduling Revisited =)
©Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n,k)) = O(poly(n))

T

EADS 1l 17.2 Scheduling Revisited =)
©Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n,k)) = O(poly(n))

For strongly NP-complete problems this is not possible
unless P=NP

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

More General
Let OPT(ny,...,n4) be the number of machines that are required to

schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

OPT(nl,...,nA)

(ng,...,na) =0
_J)J 1+ min OPT(nj;-—s1,...,m4—54) (M1,...,m4) =0
(81,..,54)EC
otw

where C is the set of all configurations.

|C| < (B + 1)4, where B is the number of jobs that possibly can fit on

the same machine.

The running time is then O((B + 1)“n*) because the dynamic

programming table has just n4 entries.

Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

m EADS II 17.3 Bin Packing =] =
©Harald Racke

Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 25
There is no p-approximation for Bin Packing with p < 3/2 unless

P = NP.

m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

Dbi=>b; ?

ieS ieT

m EADS II 17.3 Bin Packing =] =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

Dbi=>b; ?

ieS ieT

» We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

» Hence, such an algorithm can solve Partition.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Definition 26
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for

minimization problems.

m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Definition 26
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for

minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS

because of scaling.

‘m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Definition 26
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS

because of scaling.
» However, we will develop an APTAS for Bin Packing.

‘m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 27

Any packing of items into { bins can be extended with items of

size at most y s.t. we use only max{¥, 1}—ySIZE(I) + 1} bins,

where SIZE(I) = >.; s; is the sum of all item sizes.

m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 27

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 27

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 27

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Choose y = €/2. Then we either use £ bins or at most

1
1-¢€/2

-OPT+1<(1+¢€)-0PT+1

bins.

It remains to find an algorithm for the large items.

m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.

m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

m EADS II 17.3 Bin Packing &
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;

m EADS II 17.3 Bin Packing &
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

T

EADS Il 17.3 Bin Packing =)
©Harald Racke

Linear Grouping

m EADS II 17.3 Bin Packing =] =
©Harald Racke

Linear Grouping

m EADS Il 17.3 Bin Packing =] =
©Harald Racke

Linear Grouping

m EADS Il 17.3 Bin Packing =] =
©Harald Racke

Linear Grouping

m EADS Il 17.3 Bin Packing =] =
©Harald Racke

Lemma 28
OPT(I') < OPT(I) < OPT(I') + k

m EADS II 17.3 Bin Packing
©Harald Racke

Lemma 28
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

'Ml EADS Il 17.3 Bin Packing =]
©Harald Racke

Lemma 28
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

m EADS II 17.3 Bin Packing &
©Harald Racke

Lemma 28
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

T

EADS Il 17.3 Bin Packing =)
©Harald Racke

Lemma 28
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

T

EADS Il 17.3 Bin Packing =)
©Harald Racke

Lemma 29
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.

'Ml EADS Il 17.3 Bin Packing =]
©Harald Racke

Lemma 29
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

m EADS Il 17.3 Bin Packing =]
©Harald Racke

Lemma 29
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing & =
©Harald Racke

Lemma 29
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing & =
©Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.

» cost (for large items) at most

OPT(I') + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time O((%n)“/ez).

Can we do better?

©Harald Racke

17.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

Note that this is usually better than a guarantee of

(1 +€)OPT() +1 .

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Configuration LP

Change of Notation:

» Group pieces of identical size.

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.

> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.

> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
> s> is second largest size and b, number of pieces of size sp;

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.
> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
> s> is second largest size and b, number of pieces of size sp;

> LR

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Configuration LP

Change of Notation:

>

>

Group pieces of identical size.

Let 51 denote the largest size, and let b; denote the number
of pieces of size s;.

s> is second largest size and b> number of pieces of size s;

Sm smallest size and b,, number of pieces of size s;,.

T

EADS 1l 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

We call a vector that fulfills the above constraint a configuration.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Configuration LP

©Harald Racke

17.4 Advanced Rounding for Bin Packing

Configuration LP

Let N be the number of configurations (exponential).

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

min Z?lej

s.t. Vie{l...m} z]}]:l Tjixj > b;
Vje{l,...,N} Xj > 0
vje{l,...,N} x; integral

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

How to solve this LP?

later...

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

We can assume that each item has size at least 1/SIZE(I).

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new

group.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new

group.
> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

» Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new
group.

> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

» Only the size of items in the last group G, may sum up to
less than 2.

T

EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.

» For groups G»,...,G,_1 delete n; — n;_; items.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.
» For groups G»,...,G,_1 delete n; — n;_; items.

» Observe that n; > n;_;.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Lemma 30
The number of different sizes in I’ is at most SIZE(I) /2.

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Lemma 30
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Lemma 30
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Lemma 30
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

» All items in a group have the same size in I'.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Lemma 31
The total size of deleted items is at most O (log(SIZE(I))).

Lemma 31
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

Lemma 31
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

Lemma 31
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

» It discards n; — n;_1 pieces of total size at most

, o3
ni —ni_1 - Z
ni B

3 -
j=ni+1

since the smallest piece has size at most 3/n;.

Lemma 31
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

» It discards n; — n;_1 pieces of total size at most

n; —n; Hoo3
3 i -1 < 2
ng Z J

J=ni1+1

since the smallest piece has size at most 3/n;.

» Summing over all i that have n; > n;_ gives a bound of at

most
Ny-1

> 5 < O(log(SIZE(I))) .

j=1J

(note that n, < SIZE(I) since we assume that the size of
each item is at least 1/SIZE(I)).

Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I’; pack
discarded items in at most @ (log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack [xj] bins in configuration T; for all j; call the
packed instance I;.

6: Let I> be remaining pieces from I’

7: Pack I via BinPack(I»)

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Analysis

OPTyp(I7) + OPTip(I2) < OPTip(I') < OPT1p(I)

T

EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Analysis

OPTLP(Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

T

EADS I 17.4 Advanced Rounding for Bin Packing & =

©Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

> |xj]| is feasible solution for I; (even integral).

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

> |xj]| is feasible solution for I; (even integral).
» xj—|x;]|is feasible solution for I5.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

2. Pieces scheduled because they are in I.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I> are handed down to the next level.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed
into at most OPTip many bins.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed
into at most OPTip many bins.

Pieces of type 1 are packed into at most
O(og(SIZE(I))) - L

many bins where L is the number of recursion levels.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

» The total size of items in I> can be at most Z?Ll xj—1xjl
which is at most the number of non-zero entries in the
solution to the configuration LP.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
Solls Vie{l...m} Z]Jylejin > b;
Vje{l,...,N} xj = 0

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a

configuration T has Tj; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
Solls Vie{l...m} Z]Jylejin > b;
vje{l,...,N} xj = 0
Dual
max it yib;
sit. Vje{l,...,.N} X Tjyi < 1
Vie{l,..., m} yvi = 0

‘m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that
» is feasible, i.e.,

m
ZTji-SiSI,
i=1

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

» is feasible, i.e.,

m
ZTﬁ-SiSI,
i=1

» and has a large profit

m
> Tjiyi>1
i=1

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

» is feasible, i.e.,

m
ZTﬁ-SiSI,
i=1

» and has a large profit

m
> Tjiyi>1
i=1

But this is the Knapsack problem.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Separation Oracle

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max St yibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max >t yvibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0
Primal’
min (1+¢€) Zlle Xj
S.t. Vie{l...m} Eylejin > by
vje{l,...,N} xj = 0

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

» Let DUAL" be DUAL without unused constraints.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

» Let DUAL” be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

>

The constraints used when computing z certify that the
solution is feasible for DUAL'.

Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Let DUAL" be DUAL without unused constraints.

The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

The optimum value for PRIMAL" is at most (1 + €')OPT.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

>

The constraints used when computing z certify that the
solution is feasible for DUAL'.

Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Let DUAL" be DUAL without unused constraints.

The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

The optimum value for PRIMAL" is at most (1 + €')OPT.

We can compute the corresponding solution in polytime.

This gives that overall we need at most
(1 + €)OPTrp(I) + O(log? (SIZE(I)))

bins.

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

This gives that overall we need at most
(1 + €)OPTrp(I) + O(log? (SIZE(I)))
bins.

We can choose ¢’ = % as OPT < #items and since we have a
fully polynomial time approximation scheme (FPTAS) for
knapsack.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Lemma 32 (Chernoff Bounds)

Let X1,...,Xn ben independent 0-1 random variables, not
necessarily identically distributed. Then for X = > | X; and
Uu=E[X],L<u=<U,andd >0

el v
PriX > (1 + 5)U] < ((1-|—5)1+6) ,

and

e o t
PrlX < (1-0)L] < <(1_5)15) ,

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Lemma 33
For 0 < 6 <1 we have that

5 U
e) < ,U8s
(1 + 5)1+6 -

e o t 2
((1 - 6)1—5) se s

and

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then
Pr(X = a] <E[X]/a

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then
Pr(X = a] <E[X]/a

Trivial!

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

E[X]

(1+6)U

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

E[X] 1

1+6)U 1+6

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

That’s awfully weak :(

E[X] 1

1+6)U 1+6

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Set p; = Pr[X; = 1]. Assume p; > 0O for all i.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

Now, we apply Markov:

E[etX]
tx t(1+6)U
Pr[e'* > e] < SI0)0

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

Now, we apply Markov:

E[etX]
tx t(1+6)U
Pr[e'* > e] < SI0)0

This may be a lot better (1?)

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

E [etx]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

E [etX] =E [etzl'xi]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Elet] =kl <[T,

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E [etxi]

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[eti] = (1-p;) + pie*

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] - e[B[], - T[]

E[etXi] =(1- pi) + piet =1+ pi(et -1)

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

[LE [etxi]

.
m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

niE [etXi] < niepi(et—l)

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

o] - B[er5] - B[T e%] - T[]
E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

[T,E [etXi] < ﬂiepi(et_” — eXpile'=1)

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

£[e] - e[e5] - £[T,0] -] e[
E [etxi] = (1-p) +piet =1+pie! —1) < erit®-V

[[E [etxi] <]_[l,epi(et—l) _ eXpilet=1) _ ,(et-1)U

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Now, we apply Markov:

PriX = (1 +9)U]

Pr[etX > et(1+5)U]

E[etX]

= ot(1+0)U

©Harald Racke

18.1 Chernoff Bounds

Now, we apply Markov:

Pr[X = (1 + 6)U] = PretX = !(1+9U]
E[etX] ele'-DU

= ol U = ot(1+8)U

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Now, we apply Markov:

Pr[X = (1 + 6)U] = Pr[e'X = ot (1+9)U]

E[etX] e(et—l)U

We choose t = In(1 + 9).

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Now, we apply Markov:

Pr[X = (1 + 6)U] = PretX = !(1+9U]
E[etX] ele'-DU

ed

T et(1+8)U = pt(1+6)U —

We choose t = In(1 + 6).

<

(1+ 5)1+6

z

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Lemma 34
For 0 < 6 <1 we have that

5 U
e) < ,U8s
(1 + 5)1+6 -

e o t 2
((1 - 6)1—5) se s

and

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:

(

e v
) < e7U62/3

(1+ 5)1+6

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

True for 6 = 0.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

True for 6 = 0. Divide by U and take derivatives:

—-In(1+6) <-26/3

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

f6):=—-In(1+6)+25/3<0

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1

FO=-175

+2/3

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1 v 1
Tve P23 (5)_(1+5)2

f1(6) =~

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1 v 1
Tve P23 (5)_(1+5)2

f1(6) =~

F(0)=0and f(1) = —1In(2) +2/3 <0

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

For 6 = 1 we show

(

e v
) < o USI3

(1+ 5)1+6

©Harald Racke

18.1 Chernoff Bounds

For 6 = 1 we show

e? v -US/3
((1 + 5)1+6> =e

Take logarithms:

UWGb-1+6)In(1+6)) <-Ud/3

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

For 6 = 1 we show

e? v -US/3
((1 +5)1+6> =e

Take logarithms:

UWGb-1+6)In(1+6)) <-Ud/3

True for 6 = 0.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

For 6 = 1 we show
U
e < »-Ud/3
(1+ 5)1+5 =€

Take logarithms:

UWB-(1+6)In(1+6)) <-Ud/3

True for 6 = 0. Divide by U and take derivatives:

—-In(1+6) <-1/3 < In(1+6)=1/3 (true)

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Show:

(

-5 L
e) < o-L8%/2

(1- 5)1—6

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

Show:
6_5 L 2
((1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
6_5 L 2
((1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

True for 6 = 0.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
8_5 L 2
<(1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

True for 6 = 0. Divide by L and take derivatives:

In(1-6)=<-6

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

In(1-96)=<-¢

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

True for 6 = 0.

In(1-6)=<-6

©Harald Racke

18.1 Chernoff Bounds

In(1-6)=<-6

True for 6 = 0. Take derivatives:

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

In(1-6)=<-6

True for 6 = 0. Take derivatives:

This holds for 0 < 6 < 1.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Integer Multicommodity Flows

» Given s;-t; pairs in a graph.

» Connect each pair by a path such that not too many path

use any given edge.

T

min w
S-t- vi zpeg)i Xp = 1
Zp:eep Xp = W
xp € {0,1}
EADS Il 18.1 Chernoff Bounds & =

©Harald Racke

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set 2°; at random according
to the probability distribution given by the Linear Programming
solution.

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Theorem 35
If W* > clnn for some constant c, then with probability at least
n=</3 the total number of paths using any edge is at most

W* + /cW*Inn.

Theorem 36
With probability at least n=¢/3 the total number of paths using
any edge is at most W* + cInn.

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

E[Y.]

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

EY]=3 3 x;

i pePiecp

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

ElYll=> > xp= > xh=<w*

i pePiecp pecP

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

Then
Pr[Y, = (1 + 8)W*] < e W*8%/3 =

1

ne/3

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

19 MAXSAT

Problem definition:
» 1 Boolean variables

©Harald Racke

19 MAXSAT

19 MAXSAT

Problem definition:

» 1 Boolean variables

» m clauses Cy,..

., Cm. For example

C7 =X3V X5V Xg

©Harald Racke

19 MAXSAT

19 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.

‘m EADS Il 19 MAXSAT
©Harald Racke

19 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.

» Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.

m EADS Il 19 MAXSAT =) =
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

‘m\ EADS Il 19 MAXSAT
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

m EADS Il 19 MAXSAT =)
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

m EADS Il 19 MAXSAT =)
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

m EADS Il 19 MAXSAT =) =
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with £;.

m EADS Il 19 MAXSAT =) =
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation x; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with ;.

» Clauses of length one are called unit clauses.

m EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).

‘m\ EADS Il 19 MAXSAT =) =
©Harald Racke

Define random variable X with

X = 1 if C; satisfied
7L 0 otw.

m EADS Il 19 MAXSAT
©Harald Racke

Define random variable X; with

X = 1 if C; satisfied
771 0 otw.

Then the total weight W of satisfied clauses is given by

W = Z‘LUJ'XJ'
J

‘m EADS Il 19 MAXSAT
©Harald Racke

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]
J

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

=2uy1- ()")

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

=§wj<1—(§)€j)
= ;%wj

OPT

=

1
2

T

EADS Il
©Harald Racke

19 MAXSAT

MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/xi\/ \/)_Ci

jGPJ' jGNJ'

‘m\ EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/xi\/ \/)_Ci

jGPJ' jENJ'
max 2jw;zj
s.t. Vj Zier i+ ZieNj(l -Yi) = zj
Vi yi € {0,1}
Vj zZj = 1

‘m EADS Il 19 MAXSAT =)
©Harald Racke

MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and,
hence, to false with probability (1 — y;)).

‘m\ EADS Il 19 MAXSAT =)
©Harald Racke

Lemma 37 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay

k 1/k

i=1 i=1

m EADS Il 19 MAXSAT
©Harald Racke

Definition 38
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

‘M\ EADS Il 19 MAXSAT =)
©Harald Racke

Definition 38
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 39
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)

for A € [0,1].

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Definition 38
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 39
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)
= (1-2)f(0) +Af(1)

for A € [0,1].

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Definition 38
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 39
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S(A) =f((1-A)0+ A1)
> (1-A)f(0)+Af(1)
=a+Ab

for A € [0,1].

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Pr[C; not satisfied]

[T

EADS Il
©Harald Racke

19 MAXSAT

Pr[C; not satisfied] = [[(1 —) [] »i

i€P; ieN;

[T

EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied]

IA

[Ta-> [T i

i

T

EADS Il
©Harald Racke

i€P; iEN;
1
7 D A-y)+ > v
J \iep; iEN;
19 MAXSAT

Pr[C; not satisfied]

[Ta-> [T i
i€P; ieN;

4
é(Z(l—ylH > yl)]

iEP; iEN;

_ #J.
= (Eyﬁ Z(l—yl)]
| i€P; ieEN;

IA

m EADS Il 19 MAXSAT =)
©Harald Racke

Pr[C; not satisfied]

IA

[Ta-> [T i
i€P; ieN;

iEP; iEN;

(Z it Z(l—yl

i€P; ieEN;

4
é(Z(l—ylH > yl)]

)

T

EADS Il
©Harald Racke

19 MAXSAT

The function f(z) =1 — (1 — %)e is concave. Hence,

Pr[C; satisfied]

m EADS Il 19 MAXSAT
©Harald Racke

The function f(z) =1 — (1 — %)e is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — (— ZJ)
Y

m EADS Il 19 MAXSAT
©Harald Racke

The function f(z) =1 - (1

2\ i
Pr[C; satisfied] > 1 — (_ J)

— Z)Uis concave. Hence,

4;

[1-0-8)")

©Harald Racke

19 MAXSAT

The function f(z) =1 — (1 — %)e is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — (— ZJ)
Y

[i-(-2)° =

’ {-1 z r=2 .
f(z) = —7[1 - ?] =<0 for z € [0,1]. Therefore, f is
concave.

‘M\ EADS Il 19 MAXSAT =)
©Harald Racke

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > w;Pr[C; is satisfied]
J

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > w;Pr[C; is satisfied]

J

> D w;z; [1 - (1 -

J

1

4

)|

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > w;Pr[C; is satisfied]

J
> > w;z; [1— (1—
j
> (1—1>0PT.
e

1

4

)|

T

EADS Il
©Harald Racke

19 MAXSAT

MAXSAT: The better of two

Theorem 40

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.

‘m EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wi,W2}]

‘m\ EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

‘m\ EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

3zwa - () g ())

‘m EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

o3)

gwjzj ; (1—(1_31])%-)+;(1_(;)ej>l

3 .
> for all integers

%

\%

‘m EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

o3)

>
0.
1 1\7) 1 1\ %
J
> %for aIIY integers

3
> —0OPT
> 40

‘m EADS Il 19 MAXSAT =)
©Harald Racke

£

wl /

—— randomized rounding
0.5 —— flipping coins
- average
! !
1 2 3 4 5 6

¢

m EADS Il 19 MAXSAT =)
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0, 1] and set x; to true
with probability f(y;).

m EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

m EADS Il 19 MAXSAT
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

Theorem 41
Rounding the LP-solution with a function f of the above form
gives a %-approximation.

‘m EADS Il 19 MAXSAT =)
©Harald Racke

0.5

4x—1
——1-4

0.5

T

EADS Il
©Harald Racke

19 MAXSAT

Pr[C; not satisfied]

[T

EADS Il
©Harald Racke

19 MAXSAT

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

lEPj IENJ'

T

EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

iEPj iENJ'
< n 47Yi 1_[4vi—1
iEPj iENj

m EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

iEPj iENJ'
< n 47Yi 1_[4vi—1
iEPj iENj

_ 4*(Zier yi*ZieNj(lfyi))

‘m EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

iEPj iENJ'
< n 47Yi 1_[4vi—1
iEPj iENj

_ 4*(Zier yi*ZieNj(lfyi))

<477

‘m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied]

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] = 1 — 472

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W]

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

Therefore,

E[W] = > w;Pr[C; satisfied]
J

‘m\ EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ
J

‘m\ EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ > zOPT
J

‘M\ EADS Il 19 MAXSAT
©Harald Racke

Can we do better?

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 42 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 42 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 42 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.

Lemma 43
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
G 2j Wiz
st Vj Yiep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
Vj zj < 1

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Lemma 43
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
G 2j Wiz
st Vj Yiep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
v j zj < 1

Consider: (x1 VvV x2) A (X1 VX2) A (X1 V X2) A(X1V X2)

> any solution can satisfy at most 3 clauses

> we can set | = y» = 1/2 in the LP; this allows to set
Z1=22=23=24=1

» hence, the LP has value 4.

m EADS Il 19 MAXSAT =) =
©Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Si1 wix;
s.t. YuelU Zi;ueSi Xi =
Vie{l,..., k} xXi =

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix;
s.t. VuelU iyes;Xi = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Duecu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu =2 0

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
> ldentify an element e that is not covered in current primal
integral solution.

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable v, until a dual constraint becomes

tight (maybe increase by 0!).

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable v, until a dual constraint becomes

tight (maybe increase by 0!).
> If this is the constraint for set S; set xj = 1 (add this set to

your solution).

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve = wj

eeSj

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

2.
J

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

Jwi=2, 2, Ve

j eeSK,-

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

ZwJ—Z Zye—zm e €S}y

Jj e€s;

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

Qwj=2 ZJ’e—ZH] eeSi}-ve<f- Zye<f OPT

J J ees;

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= z Ye = Wj

(—ZESJ'

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eeSj

If we would also fulfill dual slackness conditions

YVe>0= > xj=1

Jie€Ss;

then the solution would be optimal!!l

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > x;=f

Jie€S;

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

We don'’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > x;=f

Jie€S;
This is sufficient to show that the solution is an
f-approximation.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Suppose we have a primal/dual pair

min 2.j CjX;j max
s.t. Vi Zj: aijxj = b s.t. Vj
Vj xj = 0 Vi

2ibiyi
2iaijYi
i

IA

%

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Suppose we have a primal/dual pair

min 2.j CjX;j max >ibivyi
s.t. Vi Zj: aijxj = b s.t. Vi aijyi < ¢Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1
Xj > 0= Zaijyi = &Cj
i
yi>0: Zainj SBbi
J

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Then

Z CjXj
J

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Z CjXj
J

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

right hand side of j-th
dual constraint

I
YL
J

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Z CiXj|=

2| 2 i | Xi

J

©Harald Racke

20 Primal Dual Revisited

Then

Deixjl=ad | Y aijyi | x;
j i\

o3 (Sas,)

i J

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Then

Z CjXj
J

<o) | D aijyi|x;
Jj i

o3 (Sas,)

i \j
<aB- > biyi
i

©Harald Racke

20 Primal Dual Revisited

Then

Deixjl=ad | Y aijyi | x;
j i\

o3 (Sas,)

i J

B> biyi
i

dual objective

IA

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some
cycles.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

min Dy Wy Xy
s.t. VC E C ZUGC X‘U = 1
Yv xy = 0
Dual Formulation:
max Y.cecYc
s.t. VveV ZC:vECyC = Wy
vC yc = 0

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase y¢ until dual constraint for some vertex v
becomes tight.
» set x, = 1.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Then

Zwvxv
v

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Zwvxv =Z Z YcXv
v

vV CwveC

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Zwvxv ZZ Z YcXv
v

vV CwveC

>, 2. e

veSCveC

where S is the set of vertices we choose.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Then

Zwvxv ZZ Z YcXv
v

vV CwveC
=2 2 v
veSCveC
=>18nCl-yc
&

where S is the set of vertices we choose.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Then

Zwvxv :Z Z YcXv
v

vV CwveC

=2 2
veSCveC

=2 1SnCl- e
&

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but
this is unrealistic.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Algorithm 1 FeedbackVertexSet

1. vy <0

2:x <0

3: while exists cycle C in G do

4: increase yc until there is v € C s.t. Y c.pec Ve = Wy
5 Xy =1

6 remove v from G

7 repeatedly remove vertices of degree 1 from G

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

‘m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 44

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=|SNnC| <0O(logn) .

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
st. v§SeSs Ze:g(s)xe > 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Ys
st. Ve €E Dgoesis) Vs
vSesS s

vV IA

c(e)

20 Primal Dual Revisited

©Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vsSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Primal Dual for Shortest Path

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Algorithm 1 PrimalDualShortestPath

1. v <0

2. F <0

3: while there is no s-t path in (V,F) do

4 Let C be the connected component of (V,F) con-
taining s

Increase yc¢ until there is an edge ¢’ € 6(C) such
that Xg.re5(s) Vs = c(e).

F <~ Fu{e'}

: Let P be an s-t path in (V,F)

8: return P

(9]

N @

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Lemma 45
At each point in time the set F forms a tree.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Lemma 45
At each point in time the set F forms a tree.

Proof:

> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 45
At each point in time the set F forms a tree.

Proof:
> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

> cle)

ecP

> 2. s

ecP S:eed(S)

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

> 2. s

ecP S:eed(S)

S PASS) s

S:seS,t¢S

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

D=2 > s

ecP ecP S:eed(S)

= > IPns©S)|-ys
S:seStgS

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

D=2 > s

ecP ecP S:eed(S)

= > IPns©S)|-ys
S:seStgS

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si,ti,i=1,...,k, and a cost function ¢ : E — R* on the edges.
Find a subset F < E of the edges such that for every

i€ {1,...,k} there is a path between s; and t; only using edges
in F.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si, ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ecle)xe
s.t. VScV:SeS;forsomei DocssyXe = 1
Ve e E x. € {0,1}

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si, ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ecle)xe
s.t. VScV:SeS;forsomei DocssyXe = 1
Ve e E x. € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

max 2S:3ist.Ses; Vs
s.t. VeeE 25;865(5) ys =< cl(e)
s =2 0

A

The difference to the dual of the shortest path problem is that
we have many more variables (sets for which we can generate a
moat of non-zero width).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Algorithm 1 FirstTry

1. v <0

2:F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;,t;}| = 1 for some 1.

5: Increase yc¢ until there is an edge e’ € 6(C) s.t.
2.sesieres(s) VS = Ce’

6: F—Fu{e'}

7: return |UJ; P;

m EADS Il 20 Primal Dual Revisited
©Harald Racke

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Secle)=> > s

ecF ecF S:eed(S)

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dDcle)=> > ys=>18(S)NFl-ys .

ecF ecF S:eed(S) S

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dDcle)=> > ys=>18(S)NFl-ys .

ecF ecF S:eed(S) S

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dee)=> > ys—Zlé (S)NFl-ys .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

dee)=> > ys—ZI(S (S)NFl-ys .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

» The i-th pair is vy-v;.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

docler=2 > y5—2|55)ﬂF| Vs .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.
» The i-th pair is vy-v;.

» The first component C could be {vg}.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

docler=2 > y5—2|55)ﬂF| Vs .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

v

The i-th pair is vo-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

doeler=2 > ys—2|5(s>mp| s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

v

The i-th pair is vo-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

doeler=2 > ys—2|5(s>mp| s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

» The i-th pair is vy-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
Yivet > 0 but [6({vo}) NF| =

v

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Algorithm 1 SecondTry

1:y<0;F<0;¢ -0

2: while not all s;-t; pairs connected in F do

3: {—4+1
4: Let C be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some i.

Increase y¢ for all C € C uniformly until for some edge
ep €6(C), C" € Cs.t. Xge)e5(5) Vs = Cey
6: F — Fu {ep}

7. FF < F

8: for k — £ downto 1 do // reverse deletion
9 if F/ — ey is feasible solution then
0: remove ey from F’

1: return F’

vl

1
1

m EADS Il 20 Primal Dual Revisited
©Harald Racke

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Example

51

.51

S2 to

053

t3

©Harald Racke

20 Primal Dual Revisited

Example

(]
S1 52 tr

(5]

053

t3

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Example

(5]

51

S2 to

053

t3

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Example

(5]

51

S2 to

053

t3

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Example

(5]

51

S2 to

053

t3

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Lemma 46
For any C in any iteration of the algorithm

> 18(C)nF'| <2[C]
ceC

This means that the number of times a moat from C is crossed
in the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

2. ce

ecF’

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

2. =2 2 s

ecF’ ecF’ S:eed(S)

m EADS II 20 Primal Dual Revisited
©Harald Racke

Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) N

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dDece=> > yS—ZIF Nos)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFns0)
ceC

and the increase of the right hand side is 2¢|C].

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

dDece=> > ys—Z|Fma<s>| Vs .

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > [Fnés(O)
ceC
and the increase of the right hand side is 2¢|C].

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 47
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Lemma 47
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 47
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 47

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).
» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H = F —F;.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 47

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H = F —F;.

» All edges in H are necessary for the solution.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

» Contract all edges in F; into single vertices V'.

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

T

EADS I 20 Primal Dual Revisited &
©Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T

EADS Il 20 Primal Dual Revisited & =
©Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T

> We have
?
> deg(v) = > [5(C) nF'| =2|C| =2R|
vER cecC
EADS 1l 20 Primal Dual Revisited =) = =

©Harald Racke

» Suppose that no node in B has degree one.

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.
» Then

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.

» Then

>, deg(v)

VER

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.

» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

< 2(|R| + |B|) — 2|B|

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

» Suppose that no node in B has degree one.

» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

T

EADS I 20 Primal Dual Revisited & =
©Harald Racke

» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

T

EADS 1l 20 Primal Dual Revisited & =
©Harald Racke

» Suppose that no node in B has degree one.
» Then
> deg(v) = > deg(v) — > deg(v)

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

T

EADS 1l 20 Primal Dual Revisited & =
©Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

» But then it must be a red node.

T

EADS 1l 20 Primal Dual Revisited & =
©Harald Racke

21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vVSeSs 2665(5) Xe = 1
Ve e E x. € {0,1}

S is the set of subsets that separate s from t.

m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vSeS 2665(5) Xe = 1
Ve e E X = 0
S is the set of subsets that separate s from t.
The Dual:
max 2.5 Vs
st. Ve€E Dgeesis)Vs =< cle)
vses ys = 0

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vSeS 2665(5) Xe = 1
Ve € E Xe = 0
S is the set of subsets that separate s from t.
The Dual:
max 2.5 Vs
st. Ve€E Dgeesis)Vs =< cle)
vses ys = 0

The Separation Problem for the Shortest Path LP is the Minimum
Cut Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Minimum Cut

min Decle)xe
st. VPP D.cpXe
Ve e E Xe

>

€

1
10,1}

P is the set of path that connect s and t.

m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Minimum Cut

min Decle)xe
st. VPe?P DeepXe = 1
Ve € E Xe =
P is the set of path that connect s and t.
The Dual:
max 2p P
st. Ve€E Dp.ecpyp < cle)
VP e P yp = 0

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Minimum Cut

min Decle)xe
st. VPe?P DeepXe = 1
Ve € E Xe =
P is the set of path that connect s and t.
The Dual:
max 2p P
st. Ve€E Dp.ecpyp < cle)
VP e P yp = 0

The Separation Problem for the Minimum Cut LP is the Shortest
Path Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Minimum Cut

min Secle)le
st. VPeP S,eple = 1
Ve e E l, =
P is the set of path that connect s and t.
The Dual:

max 2pfp

st. Vee€E Dpe.epfr =< cle)

VP e?P fr = 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.

» We can view ¥, as defining the length of an edge.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.

> Define d(u,v) = MiNpath P btw. u and v Decp le as the
Shortest Path Metric induced by ,.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.

> Define d(u,v) = MiNpath P btw. u and v Decp le as the
Shortest Path Metric induced by ,.

» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we

could reduce ¥, without affecting the distance between s
and t.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.
» Define d(u,v) = miNpath P btw. u and v D.ecp Le as the
Shortest Path Metric induced by ,.
» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we
could reduce £, without affecting the distance between s
and t.

Remark for bean-counters:
d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of » should we choose?

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of ¥ should we choose? choose randomly!!!

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of ¥ should we choose? choose randomly!!!

Formally:
choose v u.a.r. (uniformly at random) from interval [0, 1)

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

5 A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

5 A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

5 A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

v
(] O
N u

~

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

v
(] O
N u

~

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

(] O
N u

~

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

&
N
~0

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

&
N
~0

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

&
N
~0

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
<
-

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

Pr[e is cut]

‘m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

Pr[e is cut] = Pr[r € [d(s,u),d(s,v))]

‘m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

as,v) —d(s,u)

Prle is cut] = Pr[r € [d(s,u),d(s,v))] <)

‘m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

as,v) —d(s,u)

Prle is cut] = Pr[r € [d(s,u),d(s,v))] <
<L,

1-0

‘m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is the expected size of a cut?

E[size of cut] = E[Ze c(e)Pr[e is cut]]
< Zec(e)ﬁe

m EADS Il 21 Cuts & Metrics
©Harald Racke

What is the expected size of a cut?

E[size of cut] = E| Ze c(e)Pr[e is cut]]
< Zec(e)ﬂe

On the other hand:

Zec(e)ﬂe < size of mincut

as the ¥, are the solution to the Mincut LP relaxation.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

What is the expected size of a cut?

E[size of cut] = E| Ze c(e)Pr[e is cut]]
< Zec(e)ﬂe

On the other hand:

Zec(e)ﬂe < size of mincut

as the ¥, are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

min Secle)le
s.t. VPeP;forsomei D,ple = 1
Ve € E t. € {0,1}

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

min Secle)le
s.t. VPeP;forsomei D,ple = 1
Ve € E t. € {0,1}

Here P; contains all path P between s; and t;.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

Re-using the analysis for the single-commodity case is
difficult.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

> If for some R the balls B(s;, R) are disjoint between different
sources, we get a 1/R approximation.

» However, this cannot be guaranteed.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

T

EADS Il 21 Cuts & Metrics =g
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

T

EADS Il 21 Cuts & Metrics &
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

> Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z0.

T

EADS Il 21 Cuts & Metrics & =
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

» Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z90.

Algorithm 1 RegionGrowing(s;i, p)
1:. z<0

2: repeat

3 flip a coin (Pr[heads] = p)
4. z—z+1
5
6

- until heads
: return B(s;, z)

m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

‘m EADS Il 21 Cuts & Metrics =)
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2: C — RegionGrowing(si, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(si, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

» if we choose p = § the probability of cutting an edge is only
its LP-value; our expected cost are at most OPT.

m EADS Il 21 Cuts & Metrics
©Harald Racke

Problem:
We may not cut all source-target pairs.

m EADS Il 21 Cuts & Metrics
©Harald Racke

Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

If we ensure that we cut before reaching radius 1/2 we are in
good shape.

‘m EADS Il 21 Cuts & Metrics =)
©Harald Racke

» choose p =6Ink -6

[T

EADS Il
©Harald Racke

21 Cuts & Metrics

» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

T

EADS Il 21 Cuts & Metrics
©Harald Racke

» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

» we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

S
IA
o
Sk

Pr[not successful] < (l—p)% = ((1—;9)1/”)

IA

T

EADS I 21 Cuts & Metrics &
©Harald Racke

» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

» we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

S

2 —

Prnot successful] < (1—p)? = ((1—;9)1/”) ce b <L

k3

» Hence,

. . 1
Pr[3i that is not successful] < X2

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

m EADS Il 21 Cuts & Metrics
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize | succ.]

m EADS Il 21 Cuts & Metrics
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize]
~ Pr[success]

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] =

Pr[success]
E[cutsize] 1 61nk - OPT
~ Pr[success] T~ 1 — %

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize] ! 6Ink.OPT < 8Ink - OPT

~ Pr[success] T~ 1 — %

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

_ E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize] ! 6Ink.OPT < 8Ink - OPT

~ Pr[success] T~ 1 — %

Note: success means all source-target pairs separated

We assume k > 2.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

If we are not successful we simply perform a trivial
k-approximation.

This only increases the expected cost by at most
& - kOPT < OPT/k.

Hence, our final cost is O(Ink) - OPT in expectation.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Facility Location

Given a set L of (possible) locations for placing facilities and a

set D of customers together with cost functions s: D x L — R*
and o: L — R* find a set of facility locations F together with an
assignment ¢ : D — F of customers to open facilities such that

D> o(f) + D s(c,plc))

feF
is minimized.
In the metric facility location problem we have

s(e, f) <s(e, f1) +s(c', f)+sc, f) .

‘m EADS Il 22 Facility Location = =
©Harald Racke

Facility Location

Integer Program

min 2ier JiYi + 2ier 2.jep CijXij
s.t. VjeD DicrXij = 1
VieF,jeD Xij = Vi
VieF,jeD xij € {0,1}
VieF yvi € {0,1}

As usual we get an LP by relaxing the integrality constraints.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Facility Location

Dual Linear Program

max
s.t.

Zjeva

VieF ZjeDwij
VieF,jeED v;—wj
VieF,jeD Wij

IV IA A

fi

Cij

©Harald Racke

22 Facility Location

Facility Location

Definition 48
Given an LP solution (x*, ¥*) we say that facility i neighbours
client j if x;; > 0. Let N(j) = {iEF:x;“j > 0}.

m EADS I 22 Facility Location =
©Harald Racke

Lemma 49

If (x*,v*) is an optimal solution to the facility location LP and
(v*,w*) is an optimal dual solution, then xi*j > 0 implies

Cij = v;-".

Follows from slackness conditions.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

m EADS Il 22 Facility Location =) =
©Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v ;.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN(j) + 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v ;.

Hence, the total assignment cost is

D.Ci;j < 2 vf =OPT,
J J

where i; is the facility that client j is assigned to.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Problem: Facility cost may be huge!

m EADS I 22 Facility Location
©Harald Racke

Problem: Facility cost may be huge!

Suppose we can partition a subset F’ < F of facilities into
neighbour sets of some clients. l.e.

F' =|HNGi)
k

where j1, j2,... form a subset of the clients.

‘m EADS Il 22 Facility Location
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik

m EADS Il 22 Facility Location =) =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik :fik Z x;kjk

i€N (jk)

m EADS Il 22 Facility Location =) =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk

i€N (jk) €N (jk)

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zfik
k

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk = Z fiyi*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk = Z Z fl)’l

k ieN(jk)

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk = Z fiyi*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk—z Z flyl Zfiyi*

k ieN(jx) ieF’

‘m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk—z Z flyl Zfiy{kﬁz.fiyi*

k ieN(jx) ieF’ ieF

‘m EADS Il 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik:fik Z x;kjks Z fixl?kjkS Z flyl*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk <> > fivi= D fivi=> five

k ieN(jx) ieF’ ieF

Facility cost is at most the facility cost in an optimum solution.

‘m EADS Il 22 Facility Location =
©Harald Racke

Problem: so far clients ji, j2, ... have a neighboring facility.

What about the others?

©Harald Racke

22 Facility Location & =

Problem: so far clients ji, j2, ... have a neighboring facility.
What about the others?

Definition 50
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Problem: so far clients ji, j2, ... have a neighboring facility.

What about the others?

Definition 50
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

Note that N (j) is a set of facilities while N2(j) is a set of clients.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Algorithm 1 FacilityLocation
1: C < D// unassigned clients
2: k<0
3: while C = 0 do
4 k—k+1
5 choose ji € C that minimizes v;f
6: choose iy € N(ji) as cheapest facility
7
8

assign jx and all unassigned clients in N2(jx) to i
C — C - {jx} — N2(jx)

m EADS Il 22 Facility Location
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

m EADS II 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:

» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.

‘M EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj + Cpy

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp <V +V] + V)

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp S V] +V] + V) <3V)

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp S V] +V] + V) <3V)

Summing this over all facilities gives that the total assignment
cost is at most 3 - OPT. Hence, we get a 4-approximation.

‘m EADS Il 22 Facility Location =
©Harald Racke

In the above analysis we use the inequality

> fiyF <OPT .

ieF

m EADS I 22 Facility Location
©Harald Racke

In the above analysis we use the inequality

> fiyF <OPT .

ieF

We know something stronger namely

Zfiyi* + Z z Ciszkj < OPT .

ieF ieF jeD

m EADS I 22 Facility Location
©Harald Racke

Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to x;“jk.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random
facility according to xj‘jk.

» Then we incur connection cost

gk
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
Vi)

‘m EADS Il 22 Facility Location = =
©Harald Racke

Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to xf‘jk.

» Then we incur connection cost
PR
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
*
vjk).
» Define
X LAk
¢ = chjxij
i

to be the connection cost for client j.

‘m EADS Il 22 Facility Location = =
©Harald Racke

What will our facility cost be?

m EADS I 22 Facility Location
©Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

‘m EADS Il 22 Facility Location = =
©Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

We open facility i with probability x;j, < y; (in case itis in some
neighborhood; otw. we open it with probability zero).

‘m EADS Il 22 Facility Location = =
©Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

We open facility i with probability x;j, < y; (in case itis in some
neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

> fivi .

ieF

‘m EADS Il 22 Facility Location = =
©Harald Racke

Algorithm 1 FacilityLocation

1: C < D// unassigned clients

2: k<0

3: while C = 0 do

4 k—k+1

5 choose ji € C that minimizes v;‘ + C;f

6: choose iy € N(jk) according to probability x;j, .

7 assign jx and all unassigned clients in N2(j) to ix
8 C — C - {jk} = N2(jix)

T

EADS Il 22 Facility Location =)
©Harald Racke

Total assignment cost:

» Fix k; set j = ji.

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Z CUxijk tChj + Cpy
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Docijx +cnj+ e <Cr+vi+v)
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Summing this over all clients gives that the total assignment cost
is at most
* * *
ZCJ. + ZZvj < ZCJ. +20PT
J J J

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Summing this over all clients gives that the total assignment cost
is at most

Z Ci + Z 2vf < Z Cj +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Docijxl +enjt+ e <Cr+vi+vl <Cp+2vf
i
Summing this over all clients gives that the total assignment cost

is at most
Z Ci + Z 2vf < Z Cj +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

Adding the facility cost gives a 3-approximation.

	Approximation Algorithms
	Introduction
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines: Local Search
	Scheduling on Identical Machines: Greedy
	TSP
	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	Integer Multicommodity Flows
	Chernoff Bounds

	MAXSAT
	Primal Dual Revisited
	Cuts & Metrics
	Facility Location

