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Organizational Matters

Modul: IN2004

Name: “Efficient Algorithms and Data Structures II”
“Effiziente Algorithmen und Datenstrukturen II”

ECTS: 8 Credit points

» Lectures:

> 4 SWS
Mon 12:15-13:45 (Room 00.13.009A)
Fri 12:15-13:45 (Room 00.13.009A)

Webpage: http://wwwl4.in.tum.de/lehre/2015SS/ea/
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The Lecturer

\ 4

Harald Racke
Email: raecke@in.tum.de
Room: 03.09.044

Office hours: (per appointment)
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Tutorials

» Tutor:

» Chintan Shah

» chintan.shah@tum.de
» Room: 03.09.059

> per appointment

» Room: 03.11.018
» Time: Tue 16:15-17:45
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Assessment

> In order to pass the module you need to pass an exam.

» Exam:

> 3 hours

> Date will be announced shortly.

» There are no resources allowed, apart from a hand-written
piece of paper (A4).
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Asse

ssment

> In order to pass the module you need to pass an exam.

» Exam:

> 3 hours

> Date will be announced shortly.

» There are no resources allowed, apart from a hand-written
piece of paper (A4).

» Answers should be given in English, but German is also
accepted.
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Assessment

» Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

» Solutions have to be handed in in the following week before
the lecture on Monday.

» You can hand in your solutions by putting them in the right
folder in front of room 03.09.020.

» Solutions have to be given in English.

» Solutions will be discussed in the subsequent tutorial on
Tuesday.
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Assessment

» Assignment Sheets:

>

An assignment sheet is usually made available on Monday
on the module webpage.

Solutions have to be handed in in the following week before
the lecture on Monday.

You can hand in your solutions by putting them in the right
folder in front of room 03.09.020.

Solutions have to be given in English.

Solutions will be discussed in the subsequent tutorial on
Tuesday.

The first one will be out on Monday, 20 April.
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1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms
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Linear Programming
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Brewery Problem

Brewery brews ale and beer.

» Production limited by supply of corn, hops and barley malt
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Brewery Problem

Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

» Recipes for ale and beer require different amounts of
resources
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Brewery Problem

Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

» Recipes for ale and beer require different amounts of

resources
Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

‘m EADS Il 3 Introduction =] =
©Harald Racke



Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?
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Corn Hops Malt Profit
(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?

> only brew ale: 34 barrels of ale
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Corn Hops Malt Profit
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ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€
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Corn Hops Malt Profit
(kg) (kg) (kg) €
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€

> only brew beer: 32 barrels of beer
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Brewery Problem

Corn Hops Malt Profit

(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
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Brewery Problem

Corn Hops Malt Profit

(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€

» 7.5 barrels ale, 29.5 barrels beer
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776€
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776€

» 12 barrels ale, 28 barrels beer
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776€
> 12 barrels ale, 28 barrels beer = 800€
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Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.
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Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.
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Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.
» Make sure that no constraints (due to limited supply) are
violated.
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Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.

» Choose the variables in such a way that the objective
function (profit) is maximized.

» Make sure that no constraints (due to limited supply) are

violated.
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0
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Standard Form LPs

LP in standard form:
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LP in standard form:

> input: numbers a;j, ¢j, b;
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LP in standard form:
> input: numbers a;j, ¢j, b;

> output: numbers X
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LP in standard form:
> input: numbers a;j, ¢j, b;
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» n = #decision variables, m = #constraints
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Standard Form LPs

LP in standard form:
> input: numbers a;j, ¢j, b;
> output: numbers X
» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear
(in)equalities

‘m EADS Il 3 Introduction
©Harald Racke



Standard Form LPs

LP in standard form:
> input: numbers a;j, ¢j, b;
> output: numbers X
» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear
(in)equalities

n
max Z Cij
J=1

n
s.t. Zaijxj = b l<i<m
Jj=1

%
S
—_
IA
.
A
S

2
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Standard Form LPs

LP in standard form:

> input: numbers a;j, ¢j, b;

> output: numbers X

» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear

(in)equalities

n
max Z Cij
J=1

©Harald Racke

max c!x
n
. s.t. Ax =
X = <i<
st > aijx; bi 1<i<m x =
Jj=1
xj =2 0 1<j=<n
3 Introduction =) =



Standard Form LPs

Original LP

max
s.t.

13a
S5a
4a
35a

23b

15b <480
4b <160
20b <1190
a,b =0

+ o+ + o+
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Standard Form LPs

Original LP
max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Standard Form
Add a slack variable to every constraint.

max 13a + 23b

st. 5a + 15b + s =480
4da + 4b + Sp =160
35a + 20b + s;m =1190
a |, b , sc , sn , Sm =0
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = Db
x = 0
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = Db
x = 0

min
s.t.

\%
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0

standard
maximization form

max clx
st. Ax < b
x = 0

min cTx
s.t. Ax
X

\%
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0

standard
maximization form

max clx
st. Ax < b
x = 0

min cTx
st. Ax = b
x = 0

standard
minimization form

min c’x
st. Ax = b
x = 0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512:>a 3 CEs
s=>0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

4-3b+scs1p — d73b+5c—s=12
s>0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

—3b+5c—5=12
a-3b+5c>12 = ¢ Focms
s>0

> min to max:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

—3b+5c—5=12
a-3b+5c>12 = ¢ Focms
s>0

> min to max:

mina — 3b +5¢ = max—-a + 3b - 5¢
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

12
-12

a—3b +5c
a-3b+5c=12 = —a+3b—5c

AN IA
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

12
-12

a—3b+5c <
a-3b+5c=12 = Ca+3b-5c <

» equality to greater or equal:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3bisc=12 — 4 3brsesl
a ~a+3b-5c<-12
» equality to greater or equal:
a-3b+5c =12
a-3b+5¢c=12 = Ca43b—5c> 17

‘m EADS Il 3 Introduction =]
©Harald Racke



Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3bisc=12 — 4 3brsesl
a ~a+3b-5c<-12
» equality to greater or equal:
a-3b+5c =12
a-3b+5¢c=12 = Ca43b—5c> 17

> unrestricted to nonnegative:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3bisc=12 — 4 3brsesl
a ~a+3b-5c<-12
» equality to greater or equal:
a-3b+5c =12
a-3b+5¢c=12 = Ca43b—5c> 17

> unrestricted to nonnegative:

x unrestricted = x=x"-x",x7=0,x" =0

‘m EADS Il 3 Introduction =]
©Harald Racke



Standard Form LPs

Observations:

» a linear program does not contain x?2, cos(x), etc.
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Standard Form LPs

Observations:
» a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor
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Standard Form LPs

Observations:
» a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

» for the standard minimization or maximization LPs we could
include the nonnegativity constraints into the set of
ordinary constraints; this is of course not possible for the
standard form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?
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Fundamental Questions
Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
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Questions:
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> |s LP in NP?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> |s LP in NP?
» Is LP in co-NP?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

Input size:
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

Input size:
» n number of variables, m constraints, L number of bits to
encode the input
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Geometry of Linear Programming
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beer b

35a +20b < 1190

4a +4b < 160

5a+ 15b < 480
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Geometry of Linear Programming

beer b

35a +20b < 1190

4a +4b < 160
5a+ 15b < 480 \\
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Geometry of Linear Programming

beer b

~
/\ .
~ ~
~
\QI\ ~

N
RS
~‘
S S
~~~ ~~~
~ .~
Sl S
~ N
~
~~~~\ ~~~
MA ~ 13a + 23b = 800

a=0
I 13a + 23b = 442 alea

¥~ 13a + 23b = 1400




Geometry of Linear Programming

beer b

Regardless of the objective function an
optimum solution occurs at a vertex
(Ecke).

\
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

P is called the feasible region (Losungsraum) of the LP.

v

» A point x € P is called a feasible point (glltige Losung).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.

» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfuillbar).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

If P = @ then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).

v
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).

» An LP is bounded (beschrankt) if it is feasible and
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Definitions

Let for a Linear Program in standard form

P

={x | Ax = b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).
» An LPis bounded (beschrankt) if it is feasible and
» ¢Tx < o for all x € P (for maximization problems)

T
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Definitions

Let for a Linear Program in standard form

P

={x | Ax = b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).
» An LP is bounded (beschrankt) if it is feasible and

» ¢Tx < o for all x € P (for maximization problems)
» ¢Tx > —oo for all x € P (for minimization problems)

T
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Definition 2
Given points x,y € R™, a point z € R™ is a convex combination

of x and v if
z=Ax+(1-A)y

for some A € [0, 1].
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Definition 2
Given points x,y € R™, a point z € R™ is a convex combination
of x and v if

z=Ax+(1-A)y

for some A € [0,1].
Definition 3

A set X € R"™ is convex if the convex combination of any two
poins in X is also in X.
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Definition 4
A function f: R™ — R is convex if for x,y € R" and A € [0, 1]
we have

SAx+ 1 -2)y) <Af(x)+(1-A)f(y)
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Definition 4
A function f: R™ — R is convex if for x,v € R" and A € [0, 1]
we have

SAx+ 1 -2)y) <Af(x)+(1-A)f(y)

Lemma 5
IfP < R™, and f : R™ — R convex than also

Q=1{xeP]| f(x) =<t}
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Definition 6
The dimension of a set X < R™ is the dimension of the vector
space generated by vectors of the form (x — y) with x,y € X.
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Definition 6
The dimension of a set X < R" is the dimension of the vector
space generated by vectors of the form (x — y) with x,y € X.

Definition 7
Aset H < R"™is a hyperplane if H = {x | alx = b}, fora # 0.
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Definition 6
The dimension of a set X < R" is the dimension of the vector

space generated by vectors of the form (x — y) with x,y € X.

Definition 7
Aset H < R"™is a hyperplane if H = {x | alx = b}, fora # 0.

Definition 8
Aset H < R"is a (closed) halfspace if H = {x | a’x < b}, for
a + 0.
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Definitions

Definition 9
A polytop is a set P = R" that is the convex hull of a finite set of
points, i.e., P = conv(X) where

Y
conv(X) = {zAlxllﬂeNxl,...,xgeX,Aizo,ZAizl}

i=1 i

and | X| = c.
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Definitions

Definition 10

A polyhedron is a set P = R" that can be represented as the
intersection of finitely many half-spaces
{H(ai,b1),...,H(am,bm)}, where

H(ai,b;) = {x e R" | a;x < b;} .
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Definitions

Definition 10

A polyhedron is a set P = R" that can be represented as the
intersection of finitely many half-spaces
{H(ai,b1),...,H(am,bm)}, where

H(ai,bi) = {X e R" | aix < bi} .

Definition 11
A polyhedron P is bounded if there exists B s.t. ||x||» < B for all

x € P.
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Definitions

Theorem 12

P is a bounded polyhedron iff P is a polytop.
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Definition 13
Let P < R™, a € R" and b € R. The hyperplane

H(a,b) = {x € R" | ax = b}

is a supporting hyperplane of P if max{ax | x € P} = b.
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Definition 13
Let P < R™, a € R" and b € R. The hyperplane

H(a,b) = {x € R" | ax = b}

is a supporting hyperplane of P if max{ax | x € P} = b.

Definition 14
LetP < R"™ Fisafaceof Pif F=PorF =PnH for some
supporting hyperplane H.
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Definition 13
Let P < R™, a € R" and b € R. The hyperplane

H(a,b) = {x € R" | ax = b}

is a supporting hyperplane of P if max{ax | x € P} = b.

Definition 14
LetP < R"™ Fisafaceof Pif F=PorF =PnH for some
supporting hyperplane H.

Definition 15
Let P € R™.

» aface vis avertex of P if {v} is a face of P.
> aface e is an edge of P if e is a face and dim(e) = 1.

» a face F is a facet of P if F is a face and
dim(F) = dim(P) — 1.
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Equivalent definition for vertex:

Definition 16
Given polyhedron P. A point x € P is a vertex if 3¢ € R" such
that c’x < c’y, forall y € P.

Definition 17
Given polyhedron P. A point x € P is an extreme point if
Aa,b = x, a,b € P,with Aa+ (1 —A)b =x for A € [0,1].
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Equivalent definition for vertex:

Definition 16
Given polyhedron P. A point x € P is a vertex if 3¢ € R" such
that c’x < c’y, forall y € P.

Definition 17
Given polyhedron P. A point x € P is an extreme point if
Aa,b = x, a,b € P,with Aa+ (1 —A)b =x for A € [0,1].

Lemma 18
A vertex is also an extreme point.
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Observation
The feasible region of an LP is a Polyhedron.
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Convex Sets

Theorem 19
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

‘m EADS Il 3 Introduction =) =
©Harald Racke



Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point
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Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point

» there exists direction d = O suchthat x +d € P
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Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point
» there exists direction d = 0 suchthat x +d € P
» Ad = 0 because A(x +d) =Db
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Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point
» there exists direction d = 0 suchthat x +d € P
» Ad = 0 because A(x +d) =Db

» Wlog. assume c’d > 0 (by taking either d or —d)
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Convex Sets

Theorem 19
If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof
» suppose x is optimal solution that is not extreme point
> there exists direction d + O suchthat x +d € P
Ad =0 because A(x £d) =b
» Wlog. assume c’d > 0 (by taking either d or —d)
Consider x + Ad, A > 0

v

v
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Convex Sets
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Convex Sets

Case 1. [djs.t. d; < 0]

©Harald Racke

3 Introduction



Convex Sets

Case 1. [djs.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
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Convex Sets

Case 1. [djs.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A'd) =band x + A’'d = 0
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A'd) =band x + A’'d = 0

» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’'d) =band x +A’d = 0
» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
» cIx' =cT(x+A'd) =cTx+AcTd=cTx
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A'd) =band x + A’'d = 0

» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)

»clx' =cT(x+Ad) =cTx+AcTd=cTx

Case 2. [dj = O forall j and c’d > 0]
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’'d) =band x +A’d = 0
» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
» cIx' =cT(x+A'd) =cTx+AcTd=cTx

Case 2. [dj = O forall j and c’d > 0]
» x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=0
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’'d) =band x +A’d = 0
» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
» cIx' =cT(x+A'd) =cTx+AcTd=cTx

Case 2. [dj = O forall j and c’d > 0]
» x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=20
»asA—oo,cl(x+Ad) - oascld>0
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Algebraic View
beer b

An extreme point in R4 is uniquely de-
fined by d linearly independent equa-
tions.

A

alea



Notation
Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.
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Notation

Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.
Then x is extreme point iff Ag has linearly independent columns.
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume x is not extreme point
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume x is not extreme point

» there exists directiond s.t. x +d € P
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume x is not extreme point
» there exists directiond s.t. x +d € P

» Ad = 0 because A(x =d) =b
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b
» define B = {j | d; + 0}
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b

define B' = {j | d; + 0}

Ap' has linearly dependent columns as Ad =0

v

v
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b

define B' = {j | d; + 0}

Ap' has linearly dependent columns as Ad =0

v

v

v

dj=0forall jwithx; =0asx+d =0
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b
» define B = {j | d; + 0}
» Ap has linearly dependent columns as Ad =0
» d;j=0forall jwithx;=0asx+d =0

» Hence, B’ € B, Ap’ is sub-matrix of Ap
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Theorem 20

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (=)
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

» assume Ap has linearly dependent columns
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

» assume Ap has linearly dependent columns
» there exists d + 0 such that Agd =0
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)
» assume Ap has linearly dependent columns
» there exists d + 0 such that Agd =0
» extend d to R" by adding 0-components
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)
» assume Ap has linearly dependent columns
» there exists d + 0 such that Agd =0
» extend d to R" by adding 0-components
» now, Ad = 0 and d; = O whenever x; =0
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

>

| 2

>

assume Ag has linearly dependent columns
there exists d + 0 such that Agd =0
extend d to R™ by adding O-components
now, Ad = 0 and d; = 0 whenever x; = 0

for sufficiently small A we have x + Ad € P
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

>

| 2

>

assume Ag has linearly dependent columns
there exists d + 0 such that Agd =0
extend d to R™ by adding O-components
now, Ad = 0 and d; = 0 whenever x; = 0
for sufficiently small A we have x + Ad € P

hence, x is not extreme point
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Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
If Ag has linearly independent columns then x is a vertex of P.

0O jeB
1 j¢B
» thenc’x =0andc’y=0foryeP

> define ¢; = J{

» assume ¢’y = 0; then y; =0 forall j ¢ B
» b=Ay = Apyp = Ax = Apxp gives that Ag(xp — Yp) = 0;

» this means that xp = yp since Ap has linearly independent
columns

> wegety=x
» hence, x is a vertex of P

T
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.
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Observation
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row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ao,...,Amn;
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Ay = ZZz A; - Ay, for suitable A;



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.
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» assume wlog. that the first row A; lies in the span of the
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Ay = ZZz A; - Ay, for suitable A;
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

A1X



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

m
A1x = Zi:Z Ai . AiX



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

m m
Aix = Zi:Z Aj-Aix = Zi:Z A; - b



Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

m m
A1x = Zi:Z Ai . AiX = Zi:Z Ai . bi * bl



From now on we will always assume that the
constraint matrix of a standard form LP has full
row rank.

T
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Theorem 21
Given P = {x | Ax = b,x = 0}. x is extreme point iff there exists
Bc{1,...,n} with |B| = m and

» Ap is non-singular

> Xp = Alglb >0

» xy =0

where N = {1,...,n} \ B.
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Theorem 21
Given P = {x | Ax = b,x = 0}. x is extreme point iff there exists
B c{l,...,n} with |B| = m and
» Ap is non-singular
> Xp = Alglb >0
> XN = O
where N = {1,...,n} \ B.
Proof

Take B = {j | x; > 0} and augment with linearly independent
columns until |B| = m; always possible since rank(A) = m.
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Basic Feasible Solutions
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Basic Feasible Solutions

x € R™ is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | x; = 0};
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | x; = 0};

x is a basic feasible solution (gultige Basislosung) if in addition
x > 0.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Ajy) = [J| where J = {j | x; # 0};

x is a basic feasible solution (gultige Basislosung) if in addition

x = 0.
A basis (Basis) is an index set B < {1,...,n} with rank(Ag) = m
and |B| = m.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Ajy) = [J| where J = {j | x; # 0};

x is a basic feasible solution (gultige Basislosung) if in addition

x = 0.
A basis (Basis) is an index set B < {1,...,n} with rank(Ag) = m
and |B| = m.

x € R™ with Agx = b and x; = 0 forall j ¢ B is the basic
solution associated to basis B (die zu B assoziierte Basislosung)
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Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n — m of the x;’s are zero. The

corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.
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Basic Feasible Solutions

Definition 22

For a general LP (min{c”x | Ax = b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.
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Algebraic View

{b, Sc, Sm}
(0/40|-120]0|390)

{b, sn, Sm}
(0132/032|550)

beer

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + sm = 1190
a, b,sc,sh,Ssm=0
{a, b, sp}

{a, b, sm}
(12]28]0/0|210)

(19.41/25.53/0/-19.76/0)

{a, b, sc}
(26/14/140/0]0)

{Scs Shy Sm}
(0/0]480|160]1190)

ale {a, sc, sn} {a, sc, Sm}
(34/0130124/0)  (40(0/280|0]-210)



Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" beQ™, ce Q" e Q. Does there exist
xeQ"st. Ax=b,x>0,cTx>a?
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Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" beQ™, ce Q" e Q. Does there exist
xeQ"st. Ax=b,x>0,cTx>a?

Questions:
> |Is LP in NP? yes!
> Is LP in co-NP?
> IsLPin P?

Proof:
» Given a basis B we can compute the associated basis
solution by calculating Aglb in polynomial time; then we
can also compute the profit.
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Observation
We can compute an optimal solution to a linear program in time

o ((:}l) - poly(n, m)).

> there are only <:,’1> different bases.

» compute the profit of each of them and take the maximum
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.

Simplex Algorithm [George Dantzig 1947]
Move from BFS to adjacent BFS, without decreasing objective
function.

Two BFSs are called adjacent if the bases just differ in one
variable.
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4 Simplex Algorithm

max 13a + 23b
s.t. 5a+ 15b + s,

4a + 4b + Sp
35a + 20b
a ] b ] SC ) Sh

=480

=160
+ s, = 1190
, Sm =0
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4 Simplex Algorithm

max 13a + 23b

s.t. 5a+ 15b + s, =480
4a + 4b + sp =160
35a + 20b + sm = 1190
a, b,sc,sh,sm=0
max Z basis = {s¢, Sh, Sm}
13a + 23b -Z=0 A=B=0
Z =0
5a + 15b + s = 480
_ S = 480
4a + 4b + Sp =160 s = 160
35a + 20b + Sm =1190 Spu= 1190
a, b,sc,sn,Sm >0
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Pivoting Step

max Z
13a + 23b -7Z=0
5a + 15b + s =480
4a + 4b + sp =160
35a + 20b + Sm =1190

a: vaCJShJSm ZO

basis = {s¢, S, Sm}
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190




Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b
35a + 20b

+ Sn

+ Sm

a, bySCJShJSm

-7Z=0
= 480
=160
=1190
>0

basis = {s., Sn, Sm}
a=b=0

Z =0

sc =480

sp =160

Sm= 1190

» choose variable to bring into the basis
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Z =0
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a ’ b ’ SC ’ Sh ) Sm = O

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective
function
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» chosen variable should have positive coefficient in objective
function

» apply min-ratio test to find out by how much the variable
can be increased



Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + su
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
= 160

= 1190

>0

basis = {s., Sn, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

» apply min-ratio test to find out by how much the variable

can be increased

» pivot on row found by min-ratio test



Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + su
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
= 160

=1190

>0

basis = {s., Sn, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

» apply min-ratio test to find out by how much the variable

can be increased

» pivot on row found by min-ratio test

» the existing basis variable in this row leaves the basis



max Z
13a + 23b
5a + 15b + s¢
4a + 4b + Sp
35a + 20b + Sm
a, b,sc,sn, Sm

-7Z=0
= 480
=160
=1190
>0

basis = {s¢, S, Sm}
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190




max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
d4a+ 4b  + s, =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a , b y SC 5 Sh 5 Sm > O

» Choose variable with coefficient > 0 as entering variable.
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d4a+ 4b  +sp =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh ) Sm = O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.
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» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.
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sp =160
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» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.



max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
4a + 4b  + s, =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh ) Sm = O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.

» The basic variable in the row that gives
min{480/15,160/4 1190/20} becomes the leaving variable.



max Z
13a + 23b

5a + 15b + s
4a + 4b
35a + 20b

+ Sh

+ Sm

a'! bsSc;Sh;Sm

~Z=0
— 480
- 160
= 1190
>0

basis = {S¢, Sh, Sm }

a=b=0
Z =0

S =480
sp =160
Sm= 1190




max Z
13a + 23b
5a + 15b + s
4a + 4b
35a + 20b
a,

+ Sh

+ Sm

bsSc;Sh;Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sn, Sm }
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190

Substitute b = 1—15(480 —5a—s¢).



max Z
13a + 23b

5a + 15b
4a + 4b
35a + 20b

a , b

+ Sc
+ Sh
+ Sm
y Sc 5 Shoy Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sn, Sm}

a=b=0
Z =0

S =480
sp =160
Sm= 1190

Substitute b =

(480 - 5a - s¢).

max Z

23
155¢

1

155¢

4

2sc + Sm

SCJSh’Sm

- Z=-736
=32
=32
=550
=0

basis = {b, sp, i }

a =5.=0
Z =736
b =32
Sh =32
Sm= 550




3 a - 155¢ - Z
%a +b + %Sc

%a — 15Sc + S

%a 3Sc + Sm

-736
32
=32
=550
=0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520




mai;ei _ 2, _z=-736 || e
3a+Db+ s =32 Z =736
Sa st =32 0T
%a — %gc £ G =550 s:1= 550
a,b, Ssc,Sn, Sm >0

Choose variable a to bring into basis.



8, B,
%a+b+%sc

%a —%SC+Sh

%a = %SC + Sm
a,b, Ss.,Sn,Sm

= —-736
=32
=32
=550
=0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.



B, - B
%a+b+%sc

%a —%SC+Sh

%a - %SC + Sm
a,b, Ssc,sn, Sm

= —-736
=32
=32
=550
=0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.

Substitute a = %(32 + %Sc - Sn).



8, -3,
%a+b+%sc

%a —%SC+Sh

%a %sc + Sm
a,b, sc,sn,Sm

— =

>

-736
32

32
550
0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.
Substitute a = %(32 + %Sc - Sn).

max Z
—  Sc— 2sp
b + f—osc - %sh
a - 11*05c + %Sh
%sc gsh + Sm
a,b, s, Sn,Sm

-Z

-800
28
=12
=210
>0

basis = {a, b, s}

Se =§n =0
Z =800
b =28
a =12
Sm= 210




4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.
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Pivoting stops when all coefficients in the objective function are
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Solution is optimal:
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:

» any feasible solution satisfies all equations in the tableaux
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z = 800 — s, — 2sp, S¢ = 0,5, = 0
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z = 800 — s, — 2sp, S¢ = 0,5, = 0

» hence optimum solution value is at most 800
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4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z = 800 — s, — 2sp, S¢ = 0,5, = 0
» hence optimum solution value is at most 800

» the current solution has value 800
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©Harald Racke



Matrix View
Let our linear program be

CIJ;XB

Apxp
XB

+ ANXN
) XN

%

Ny

©Harald Racke
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Matrix View
Let our linear program be
CIJ;—XB +  CNXN
Apxp + ANXN
XB XN

The simplex tableaux for basis B is

(ch — cEAgtAN) XN
Ixp + AEIANXN
xXp XN

%

v

Z
b
0
Z - cLAg'p
Aglb
0
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Matrix View
Let our linear program be

CIJ;—XB +  CNXN

Apxp + ANXN
XB XN

The simplex tableaux for basis B is

(C]E — C%AEIAN)XN
Ixp + AElANXN
Xp XN

The BFS is given by xy = 0,xp = Az'b.

%

v

Z
b
0
Z - cLAg'p
Aglb
0
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Matrix View
Let our linear program be

chB + c{,xN = 7
Apxp + AnNXN = b
XB y xy = O

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.
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Geometric View of Pivoting

max 13a + 23b
s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190
a, b,sc,sh,Ssm=0

/
7
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Geometric View of Pivoting

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

{b, sn, sm}OL2m

/

;-

/

beer

\\\
\\
| AN

_T{sc,s;..sm} \\_

ale




Geometric View of Pivoting

max 13a + 23b
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Geometric View of Pivoting

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

/
~

\\
AN

I ale {a, s¢, sn}




Geometric View of Pivoting

beer

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

)

{Sc, Sn,

m}

ale

{a, sc, sn}



Geometric View of Pivoting

max 13a + 23b

s.t. 5a+ 15b + s =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sh,sm=0

~—

beer




Algebraic Definition of Pivoting

» Given basis B with BFS x*.
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» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;k from 0 to 6 > 0.
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.
» Other non-basis variables should stay at 0.

‘m EADS Il 4 Simplex Algorithm =) =
©Harald Racke



Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:

» d; =1 (normalization)
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B,L+j
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B, L+j
» A(x* + 60d) = b must hold. Hence Ad = 0.
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Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B, L+j
» A(x* + 60d) = b must hold. Hence Ad = 0.
» Altogether: Apdp + A, = Ad = 0, which gives
dp = —AglA,;.
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Algebraic Definition of Pivoting

Definition 23 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢B,l+jand dg = —Ag' A, is called the j-th basis
direction for B.
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Algebraic Definition of Pivoting

Definition 23 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢ B, L+ janddg=—-Az'A,; is called the j-th basis
direction for B.

Going from x* to x* + 0 - d the objective function changes by

0-cld=0(c; - cfAg'Asj)
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Algebraic Definition of Pivoting

Definition 24 (Reduced Cost)
For a basis B the value

5o AT aA-1g .

is called the reduced cost for variable x;.

Note that this is defined for every j. If j € B then the above term
is O.
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Algebraic Definition of Pivoting

Let our linear program be

C};—XB

Apxp
XB

T

+ ANXN
) XN

%

S N

©Harald Racke
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Algebraic Definition of Pivoting
Let our linear program be

chB + c{,xN = 7
Apxp + AnNXN = b
XB y xy = O

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = Aglb
XB ’ XN > O
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Algebraic Definition of Pivoting
Let our linear program be

T T

CgXp + CyXNn = Z
Apxp + AnNXN = b
XB y XN = 0
The simplex tableaux for basis B is
(ch — A AN)XN = Z-cfAglD
Ixp + AglAnxn = Aglb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.
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Algebraic Definition of Pivoting
Let our linear program be

T T

CgXp + CyXNn = Z
Apxp + AnNXN = b
XB y xy = O
The simplex tableaux for basis B is
(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.
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4 Simplex Algorithm

Questions:
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
» Is there always a basis B such that

(ch—clAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
» Is there always a basis B such that

(ch—clAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.

> If yes how do we make sure that we reach such a basis?

T
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Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.
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we increase b. Hence, there is no danger of this basic variable
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The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
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What happens if all b;/A;, are negative? Then we do not have a
leaving variable.



Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

What happens if all b;/A;, are negative? Then we do not have a
leaving variable. Then the LP is unbounded!



Termination
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Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.
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Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

Does it always increase?
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Termination

The objective function may not increase!
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Termination

The objective function may not increase!

Because a variable x, with £ € B is already 0.
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Termination
The objective function may not increase!

Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 25 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;‘ > 0} fulfills
lJ] < m.
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Termination

The objective function may not increase!
Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 25 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;‘ > 0} fulfills
lJI <m.

It is possible that the algorithm cycles, i.e., it cycles through a
sequence of different bases without ever terminating. Happens,
very rarely in practise.
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Non Degenerate Example
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< st 5a+15b + s = 480
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,Ssm=0

beer
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum by/ Ay, you reach a
degenerate basis.
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Aj, <O forallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum by/ Ay, you reach a
degenerate basis.

» Depending on the choice of £ it may happen that the
algorithm runs into a cycle where it does not escape from a
degenerate vertex.
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Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the
LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails
and we can conclude that the LP is unbounded, or we terminate
because the vector of reduced cost is non-positive. In the latter
case we have an optimum solution.
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How do we come up with an initial solution?

» Ax <b,x>=0,and b = 0.
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How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.
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How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
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How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.
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How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary
problem?

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke



Two phase algorithm
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.

5. From this you can get basic feasible solution.
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Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

If >; v; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v MW

Now you can start the Simplex for the original problem.
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Optimality

Lemma 26
Let B be a basis and x* a BFS corresponding to basis B. ¢ <0
implies that x* is an optimum solution to the LP.
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Duality

How do we get an upper bound to a maximization LP?

max

s.t.

13a + 23b

5a + 15b <480

4a + 4b <160

35a + 20b <1190
a,b >0

T
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b >0

Note that a lower bound is easy to derive. Every choice of
a,b > 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b >0

Note that a lower bound is easy to derive. Every choice of
a,b > 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;a;; = cj then > ; y;b; will be an
upper bound.
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Duality

Definition 27
Let z = max{c’x | Ax < b,x = 0} be a linear program P (called

the primal linear program).
The linear program D defined by

w=min{bTy | ATy = ¢,y =0}

is called the dual problem.
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Duality

Lemma 28
The dual of the dual problem is the primal problem.
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Duality
Lemma 28
The dual of the dual problem is the primal problem.

Proof:

» w=min{bTy | ATy > ¢,y >0}
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Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}
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Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is

» z=-min{-cTx | —Ax > —b,x > 0}
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Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is
» z=-min{-c'x | ~Ax = —b,x = 0}

» z=max{cTx | Ax <b,x >0}

m EADS Il 5.1 Weak Duality
©Harald Racke



Weak Duality

Let z = max{c'x | Ax < b,x = 0} and

w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy > ¢,y = 0}.
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Weak Duality

Let z = max{c'x | Ax < b,x = 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy > ¢,y = 0}.

Theorem 29 (Weak Duality)
Let X be primal feasible and let y be dual feasible. Then

cx<z<w<bly .
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Weak Duality

ATy > ¢
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Weak Duality

ATy >c = xTATy > xT¢
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Weak Duality

AT >c = xTATY > %Tc (X = 0)
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Weak Duality

AT >c = xTATY > %Tc (X = 0)

AX <Db
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Weak Duality

AT >c = xTATY > %Tc (X = 0)

AX <b=yTAx <9Tp
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Weak Duality

AT >c = xTATY > %Tc (X = 0)

AX <b=yTAX <9Th (¥ = 0)
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Weak Duality

AT >c = xTATY > %Tc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

o}
=
IA
2
H
N
=
IA
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Weak Duality

ATy >c= xTATY = xTc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

Since, there exists primal feasible X with ¢’X = z, and dual
feasible ¥ with b7y = w we get z < w.
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Weak Duality

ATy >c = TATY = %Tc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

Since, there exists primal feasible X with ¢’X = z, and dual
feasible ¥ with b7y = w we get z < w.

If P is unbounded then D is infeasible.
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The following linear programs form a primal dual pair:

z=max{cIx | Ax = b,x > 0}

w=min{bTy | ATy = ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.
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5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z=max{cIx | Ax =b,x > 0}

w=min{bTy | ATy = ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.
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Proof

Primal:

max{cTx | Ax = b, x > 0}
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Proof

Primal:

max{cTx | Ax = b, x > 0}
=max{c'x | Ax <b,-Ax < —b,x = 0}

‘m EADS I 5.2 Simplex and Duality
©Harald Racke



Proof

Primal:

max{cTx | Ax = b, x > 0}
=max{c'x | Ax <b,-Ax < —b,x = 0}

= max{cTx | I:_AA:|X < [_hb],x >0}
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Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{c'x | Ax <b,-Ax < —-b,x > 0}

= max{cTx | I:_AA:|X < [_hb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y > ¢,y = 0}
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Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{c'x | Ax <b,-Ax < —-b,x > 0}

= max{cTx | |:_AA:|X < [_hb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y > ¢,y = 0}

= min{[bT -pT]. [§+] [AT —AT]. [Jﬁ} >c,y 20,7 > 0}
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Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{cTx | Ax <b,—-Ax < —b,x > 0}

= max{cTx | I:_AA:|X < [_bb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y = ¢,y = 0}
=min{[bT —bT]-[y+]‘[AT—AT]-[y+}>c y‘>0y+>0}
v yo| 0 T
=min{bT-(y+—y‘)‘AT-(y+—y‘)zc,y‘zO,y+zO}
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Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{cTx | Ax <b,—-Ax < —b,x > 0}

= max{cTx | I:_AA:|X < [_bb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y = ¢,y = 0}
yr yr
=min{[bT ~b']- [ ] ‘ [AT -AT]. [ } z¢,y 20,y" 20}
v ¥
=min{p" - (y* - y7) [AT- (v -y )=y 20yt = 0]
Ty | ATy’ zc}

= min{b y'
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy*
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* _ (AX*)Ty*
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*
= (Apx) T (A Tcp

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke



Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*

= (Apx;) T (AN Tep = (x)T AL (AgY Tep
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*

= (ABXB)T(Agl)TCB = (XB)TAB (Agl)TCB
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.
bTy* _ (AX*) y (ABX*)T_')/*

= (ABXB)T(Agl)TCB = (XB)TAB (Agl)TcB

Hence, the solution is optimal.
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The profit vector c lies in the cone generated by the normals for
the hops and the corn constraint.
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Strong Duality

Theorem 30 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

zm=w
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Strong Duality

Theorem 31 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

zm=w
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Lemma 32 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{ f(x) : x € X} exists.
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Lemma 33 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)T(x — x*) <0.
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Proof of the Projection Lemma
» Define f(x) = ||y — x|
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Proof of the Projection Lemma

» Define f(x) = ||y — x|
» We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma

» Define f(x) = ||lv — x|l.
» We want to apply Weierstrass but X may not be bounded.
» X =+ (0. Hence, there exists x’ € X.
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Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

X # (. Hence, there exists x’ € X.
Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

vV v VY

We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

X # (. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

vV v VY

v

We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma (continued)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|2 < ||y — x||2 for all x € X.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy = x*|1%
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.
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Proof of the Projection Lemma (continued)
x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

Letting € — 0 gives the result.
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Theorem 34 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

',H={x|aTx=0(}
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

» Choose a = (x* — y) and & = al x*.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

» Choose a = (x* — y) and & = al x*.
» Forx e X:al(x —x*) =0, and, hence, a’x > «.

,:H={x|aTx=o<}
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
» Choose a = (x* — y) and & = al x*.

» Forx e X:al(x —x*) =0, and, hence, a’x > «.

v

Also, aTy =al(x* —a) =« — ||al® < «

,:H={x|aTx=o<}
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Lemma 35 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0
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Lemma 35 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" with Ax = b, x =0
2. 3y e R with ATy =0,bTy <0
Assume X satisfies 1. and y satisfies 2. Then

0>y'h=yTAx >0
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Lemma 35 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0

Assume X satisfies 1. and y satisfies 2. Then

0>y'h=yTAx >0

Hence, at most one of the statements can hold.
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Proof of Farkas Lemma



Proof of Farkas Lemma

Now, assume that 1. does not hold.



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x > 0} so that S closed, convex, b ¢ S.

We want to show that there is y with ATy >0, bTy < 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x
arbitrarily large.



Lemma 36 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy =0,bTy <0,y =0
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Lemma 36 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy =0,bTy <0,y =0

Rewrite the conditions:

1. 3x € R™ with [AI]-[)SC]=b,sz,szO

T

A
2. dy € R™ with [

I]yzo,bTy<0
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Proof of Strong Duality

P: z=max{cTx | Ax < b,x >0}

D: w=min{bTy |ATy > ¢,y =0}

Theorem 37 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality
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Proof of Strong Duality

z < w: follows from weak duality
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ = W:

m EADS Il 5.4 Strong Duality B
©Harald Racke



Proof of Strong Duality

w: follows from weak duality

N
IA

zZ > w:
We show z < o implies w < «.
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ > w:
We show z < o implies w < «.

dx € R"
s.t. Ax =< b
-cTx < -«
x = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R" dy e R"™;v eR
s.t. Ax =< b s.t.
-cTx < -«
x = 0

ATy —cv
bTy — v
y,v

vV A IV

)
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Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R" dy e R"™;v eR
s.t. Ax < b s.t. ATy —cv
-cTx < -« bTy — v
x = 0 Y,V

vV A IV

)

From the definition of o« we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. Aly—wv
bTy — o
Y,V

vV A IV

e}
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Proof of Strong Duality

dy e R"™;v e R

st. Aly—wv
bTy — o
Y,V

vV A IV

e}

If the solution y,v has v = 0 we have that

dy e R™
st. ATy = 0
bTy < 0
y = 0

is feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. Aly—-v > 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.
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Proof of Strong Duality
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
We can rescale this solution (scaling both y and v) s.t. v = 1.

Then v is feasible for the dual but bTy < «. This means that
w < K.
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Fundamental Questions

Definition 38 (Linear Programming Problem (LP))

Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?
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Fundamental Questions

Definition 38 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
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Fundamental Questions

Definition 38 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:

» Given a primal maximization problem P and a parameter «.

Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.
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Fundamental Questions

Definition 38 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"st. Ax =b,x>0,cTx>x?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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Complementary Slackness

Lemma 39
Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1. Ifx;f‘ > 0 then the j-th constraint in D is tight.

. If the j-th constraint in D is not tight than xJ’.k = 0.

2
3. If y/ > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than v = 0.
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Complementary Slackness

Lemma 39

Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1.

Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x;k =0.
3.
4. If the i-th constraint in P is not tight than y; = 0.

If v} > 0 then the i-th constraint in P is tight.

If we say that a variable x‘;k (v/) has slack if xj* >0 >0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*

Because of strong duality we then get

CTX* — y*TAx* — bTy*
This gives e.g.
Z(yTA —chjx; =0
J
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Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain
cIx* < p*TAx* < bTy*
Because of strong duality we then get
cTx* = y*TAx* _ bTy*

This gives e.g.

>yTa- cT)J-x;k =0

J
From the constraint of the dual it follows that ¥ A > ¢T. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190

a,b =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M >13
15C + 4H + 20M =23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &y, respectively.
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,

and &y, respectively.
The profit increases to max{c!x | Ax <b + &x = 0}.
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &y, respectively.
The profit increases to max{c’x | Ax <b + &x = 0}. Because of
strong duality this is equal to

min (b7 +€T)y
s.t. ATy
y

2%
(e}
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Interpretation of Dual Variables
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Ei_’)/l-*.
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; &;y/".

Therefore we can interpret the dual variables as marginal prices.
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Eiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; siyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

max 13a + 23b

s.t. 5a+15b + s¢ =480
4a + 4b + Sn =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0

beer

-T ale



Example
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s.t. 5a+15b + s¢ =480
4a + 4b + Sn =160
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Example

>
4 ¢ max 13a + 23b
N < s.t. 5a+ 15b + sc =480
| X 4a + 4b + Sh =160
orn 3 35a + 20b + Sm = 1190
lr,’,.ec , a, b,sc,sn,sm=0
{u, 1'7:3':1} ‘{:
Czb

beer

\

\

_-T ale
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Example

max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0

beer
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The change in profit when increasing hops by one unit is
_ T -1



Example

max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0

beer

--T ale

The change in profit when increasing hops by one unit is
= chgleh.
——

y*



Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 40
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
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Flows

Definition 40
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 41
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .
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Flows

Definition 41
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

T

max 2z foz =22 fzs
st. V(z,w)eVxV o 2 Cow Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Sfsy (y #s,b): 145, +1py = 1
Sxs (x #5,t): 1xs—1px > -1
Sty (¥ #5,t): 141y +1lpy =2 O
St (x #5,1): 10y —1py > 0
fot: 104 > 1
[ 8 10 > -1
Lscy > 0
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LP-Formulation of Maxflow

.
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

st fry: xy—lpx+lpy, = 0
Oxy =2 0
pPs = 1
pt = O

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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Flows

Definition 42
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
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Flows

Definition 42
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 43
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .
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Flows

Definition 43
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

T

max 2z foz =22 fzs
st. V(z,w)eVxV o 2 Cow Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Sfsy (y #s,b): 145, +1py = 1
Sxs (x #5,t): 1xs—1px > -1
Sty (¥ #5,t): 141y +1lpy =2 O
St (x #5,1): 10y —1py > 0
fot: 104 > 1
[ 8 10 > -1
Lscy > 0
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LP-Formulation of Maxflow

with p; =0 and p; = 1.
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LP-Formulation of Maxflow
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

st fry: xy—lpx+lpy, = 0
Oxy =2 0
pPs = 1
pt = O

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.
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Degenerate Example

beer

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0
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Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,Ssm=0
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’ x, Ax = b;x = 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’ x, Ax = b;x = 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

I. LP is feasible
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’ x, Ax = b;x = 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

I. LP’ is feasible

Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible
basis in LP’ (note that columns in Ag are linearly
independent).
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’x, Ax = b;x > 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

I. LP’ is feasible

Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible
basis in LP’ (note that columns in Ag are linearly
independent).

Il. LP’" has no degenerate basic solutions

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke



Perturbation

Let B be index set of some basis with basic solution

X§ =Ag'b = 0,x35 =0 (i.e. Bis feasible)
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Perturbation

Let B be index set of some basis with basic solution

X§ =Ag'b = 0,x35 =0 (i.e. Bis feasible)

Fix

b':=b+Apg| ! | fore>0.

sm

This is the perturbation that we are using.
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

Agl|b+Ap| : =xj+| 1 ]|=20.

gm gm
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Property Il

Let B be a non-feasible basis. This means (A]glb)i < 0 for some
row i.
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

&
Azl | b+ Ap

em
i
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
Azl |b+Ag| = (Az'D)i + | Az'Ap | <0

em em
i i
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Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
AN b+ Ap| = (Az'h)i+ | Azl Ap | <0
em emn

i i

Hence, B is not feasible.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0.
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Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0. Hence, no degeneracies.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills
¢=(ct-cfAgla) <0

then we have found an optimal basis.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.
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Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills

= (cl —cfAgta) <0

™

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.

» If it terminates because it finds a variable x; with ¢; > 0 for
which the j-th basis direction d, fulfills d = 0 we know that
LP is unbounded. The basis direction does not depend on
b. Hence, we also know that LP is unbounded.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
Simulate behaviour of LP” without explicitly doing a perturbation.
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Lexicographic Pivoting
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

m EADS I 6 Degeneracy Revisited = =
©Harald Racke



Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

Then the perturbed instance is

b"=b+

Em
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Matrix View
Let our linear program be

ckxp + chxy = Z
Apxp + AnNXN = b
XB y xy = O
The simplex tableaux for basis B is
(cf —ctAR*AN)XN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB s XN = 0

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.

‘m EADS I 6 Degeneracy Revisited
©Harald Racke



Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes
Op
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes .

_ by
A€e

0p
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes .
by (Ap'b)y

9€ = = T 1. . -
Age (ABlA*e)€
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes
o, bv _ _Ag'b)y

Ao (Ap'Ase)y
{ is the index of a leaving variable within B. This means if e.qg.
B ={1,3,7,14} and leaving variable is 3 then £ = 2.
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Lexicographic Pivoting

Definition 44
U <jex v if and only if the first component in which u and v
differ fulfills u; < v;.
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Lexicographic Pivoting

LP’ chooses an index that minimizes
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Lexicographic Pivoting

LP’ chooses an index that minimizes

&
Azl b+
0 =74
‘o (Ap'Ase)g
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1

& _1 &

Azl | b+ | : Ap (B 1) :

‘- (Ap Ase)g T (A Ak
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1
& 1 b &
A
Azl b+ 5 (P11 :
o em 0 em
{ -1 -1
(AB A*e)# (AB A*e)€
_ {-throwof Ag'(b | 1) | €
(AlglA*e)ﬂ
em
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b | )

(AglAse)p

is lexicographically minimal.
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b | )

(AglAse)p

is lexicographically minimal.

Of course only including rows with (AglA*e)g > 0.
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Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b | )

(AglAse)p

is lexicographically minimal.

Of course only including rows with (AglA*e)g > 0.

This technique guarantees that your pivoting is the same as in

the perturbed case. This guarantees that cycling does not occur.
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Number of Simplex Iterations
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (;:L) iterations, because it will not visit a basis twice.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (rﬁ) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (rﬁ) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (;) iterations then Simplex is not a

polynomial time algorithm.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (Z) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (;) iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?
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Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.
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Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.
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=T R Rt
max ¢ x e !
st. 0<x; <1 | | I
| | |
0<xp <1 ! ! :
c ! | |
. | | I
. | | |
0<xp<1 | | |
| \-N
“{ L
X1 T -7

21 constraint on n variables define an n-dimensional hypercube
as feasible region.

The feasible region has 2" vertices.
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Example

I Rt
max ¢ x e !
st. 0<x; <1 | | I
| | |
0<xp <1 ! ! :
c ! | |
. | | I
. | | |
0<xp<1 | | |
| \-N
“{ L
X1 T -1

However, Simplex may still run quickly as it usually does not
visit all feasible bases.

In the following we give an example of a feasible region for
which there is a bad Pivoting Rule.
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Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving
variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable
the leaving variable is unique.
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Klee Minty Cube

max X
s.t. 0<x; <1
€EX] < X2 <1-€x,
€Ex?» < x3 <1-€x>2
€EXn-1 <Xn <1-€xn-1
Xi = 0

0,0,1)

(l,e,ea,
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» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).
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Observations

» We have 2n constraints, and 3n variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.

» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

» In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding
to the non-tight constraint is part of the basis).



Observations

» We have 2n constraints, and 3n variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.
» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

» In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding
to the non-tight constraint is part of the basis).

» We can also simply identify each basis/vertex with the
corresponding hypercube vertex obtained by letting € — 0.



Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

T
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Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.
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Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence S, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.
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Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence S, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.

» An unfortunate Pivoting Rule may choose this sequence,
and, hence, require an exponential number of iterations.

T
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Analysis

The sequence S, that visits every node of the hypercube is
defined recursively

(0,...,0,0,0)

ésn—l
0,...,0,1,0)

s
0,...,0,1,1)

% et
0,...,0,0,1)

The non-recursive caseis S =0 —1
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Analysis

Lemma 45
The objective value x,, is increasing along path S, .
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Proof by induction:

1: obvious, since S =0—-1,and 1 > 0.
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n-1-n
For the first part the value of x;, = €x5,_1.
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Proof by induction:

1: obvious, since S =0—-1,and 1 > 0.

n
n-1-n

For the first part the value of x;, = €x5,_1.

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.
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Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:
n = 1: obvious, since S =0—-1,and 1 > 0.
n-1-n

For the first part the value of x;, = €x5,_1.

v

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.

For the remaining path S, we have x,, = 1 — €xy 1.
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Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.

n_

>

>

1-n

For the first part the value of x;, = €x5,_1.

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.

For the remaining path S, we have x,, = 1 — €xy 1.

By induction hypothesis x;,,—1 is increasing along Sy _1,

hence —ex,_1 is increasing along S;7,.



Remarks about Simplex

Observation
The simplex algorithm takes at most (;‘L) iterations. Each
iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.
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Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for
choosing entering and leaving variables) there exist lower
bounds that require the algorithm to have exponential running
time (Q(29M)) (e.g. Klee Minty 1972).
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Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Q(22"*)) for « > 0) (Friedmann,
Hansen, Zwick 2011).
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Remarks about Simplex

Conjecture (Hirsch 1957)
The edge-vertex graph of an m-facet polytope in d-dimensional
Euclidean space has diameter no more than m — d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form
O(poly(m,d)) is open.
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8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.
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8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke



8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.
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8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

> If d is much smaller than m one can do a lot better.

> In the following we develop an algorithm with running time
O(d! -m), i.e., linear in m.

T
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8 Seidels LP-algorithm

Setting:

» We assume an LP of the form

min cTx
s.t. Ax =
x =

» We assume that the LP is bounded.
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Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).
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Theorem 46 (Cramers Rule)
Let M be a matrix with det(M) + 0. Then the solution to the

system Mx = b is given by
det(Mj)

Xi = det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.
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Proof:

[T
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Proof:

» Define

Xj

el...ej*lxej‘*’l...

T
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Proof:

» Define
| L |
Xj: el"'ej—lxejﬂ"'en

Note that expanding along the j-th column gives that
det(Xj) = Xj.

T
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Proof:

» Define
| L |
Xj: el"'ej—lxejﬂ"'en

| L |
Note that expanding along the j-th column gives that
det(Xj) = Xj.
» Further, we have

MX; = Mey - - Mej 1 Mx Mej,q --- Mey =M,
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Proof:

» Define
| L |
Xj: 31"'ej—1xej+1"'en

Note that expanding along the j-th column gives that
det(Xj) = Xj.

» Further, we have

MX; = Mey - - Mej 1 Mx Mej,q --- Mey =M,

» Hence,
det(Mj)
x; = det(X;) = 7det(M)
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

|det(C)]
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

ldet(C)l = | > sgn(m) [] Cine

TESH 1<i<m
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

ldet(C)l = | > sgn(m) [] Cine
TESH I<i<m
< > [1 [Cinwl

mESM 1<i<m
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

|det(C)| > sgn(m) [] Cing

TESH 1<i<m

> I1 [Cinl

mESM 1<i<m

IA

<m!-ZM .
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Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)|
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Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| < H ICil
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Bounding the Determinant

Alternatively, Hadamards inequality gives

§

|det(C)| < 1‘[||C*l|| 1‘[(%@
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Bounding the Determinant

Alternatively, Hadamards inequality gives

§

|det(C)| < 1‘[||C*l|| 1‘[(%@

< mm/zzm )
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Hadamards Inequality

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black
cube (if [[e1ll = llarll, lle2ll = llazll, llesll = llasll).
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Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution. Add the constraint c’x = —-mZ(m!- Z™) — 1.

Note that this constraint is superfluous unless the LP is
unbounded.



Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.
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In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke



In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set # of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.
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In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set # of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x=-(mz)y(m!-zZm) - 1.
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Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;
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Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3:
4
5

choose random constraint h € H

- H — H\ {h}
. ®* — SeidelLP(#{,d)




Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a,Tlx = by,
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., a,Tlx = by,
solve agx = by, for some variable xy;
: eliminate xp in constraints from H and in implicit constr.;
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Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5: X* — SeidellLP(H,d)

6: if Xx* = infeasible then return infeasible

7. if X* fulfills h then return £*

8: // optimal solution fulfills h with equality, i.e., a,Tlx = by,
9: solve agx = by, for some variable xy;

0: eliminate xp in constraints from H and in implicit constr.;
1: X* — SeidellLP(H,d — 1)




Algorithm 1 SeidelLP(H,d)

A w N - O 0

NP2 R T

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a,Tlx = by,
solve agx = by, for some variable xy;

: eliminate xp in constraints from H and in implicit constr.;

* — SeidellP(H,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution




8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).
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8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

‘m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke



8 Seidels LP-algorithm

» If d = 1 we can solve the T-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.
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8 Seidels LP-algorithm

» If d = 1 we can solve the T-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and X* does not fulfill h we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

T

EADS Il 8 Seidels LP-algorithm =)
©Harald Racke



8 Seidels LP-algorithm

If d = 1 we can solve the 1-dimensional problem in time
O(m).

If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m —1,d — 1).

The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function

T
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8 Seidels LP-algorithm

This gives the recurrence

O(m) ifd=1

o(d) ifd>1landm =20
od) +T(m—1,d)+
4(O(dm)+Tim-1,d-1)) otw.

T(m,d) =

Note that T'(m, d) denotes the expected running time.
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8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cm ifd=1

cd ifd>1land m =0
Cd+T(m-1,d)+

%(Cdm+ Tim-1,d-1)) otw.

T(m,d) =

Note that T(m, d) denotes the expected running time.
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Let C be the largest constant in the @-notations.
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Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
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Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1m-=1:
T(1,d) = O(d) + T(0,d) + d(0(d) + T(0,d ~ 1))
<Cd+Cd+Cd>+dCf(d—-1)
< Cf(d)max{1,m} for f(d) =3d*> +df(d—1)



8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))

<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

<2CA+Cf(d(m—-1)+dCf(d-1)
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) =O0(d) + T(m - 1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2CA° +Cf(d)(m—-1)+dCf(d—-1)

<Cf(dym
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8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) = O(d) + T(m —1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2Cd*+Cf(d)(m—1)+dCf(d—1)
<Cf(dym

if f(d)=df(d-1)+2d>.
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8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1.
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8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d)
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8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d°+df(d-1)
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8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1.

Then
F(d) =3d%+df(d-1)
=3d%+d [3(d— D2+ (d—-1)f(d- 2)]
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» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d? +df(d-1)
=3d?+d[3(d-1%+(d-1)f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
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» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d-2)-...-4-3-2-12
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» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d-2)-...-4-3-2-12

_ d> (d-1)? (d-2)?
_3d!<d!+ (d—l)!+ d—2)l +>

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke



8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d-2)-...-4-3-2-12

_ d> (d-1)? (d-2)?
_3d!<d!+ (d—l)!+ d—2)l +>

=0(d!)
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8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
F(d) =3d* +df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d* +3d(d—-1)>+3d(d—-1)(d—2)* +
+3dd-1)(d-2)-...-4-3-2-12

a>  (d-1)?2  (d-2)°
—3d< (d—l)'+(d—2)!+"'>

=0(d!)

. i2 .
since >;.; 7 is a constant.
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Complexity

LP Feasibility Problem (LP feasibility)

» Given A € 7™*" b € 7™. Does there exist x € R with
Ax =b,x = 0?
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LP Feasibility Problem (LP feasibility)

» Given A € 7™*" b € 7™. Does there exist x € R with
Ax =b,x = 0?

> Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.
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Complexity

LP Feasibility Problem (LP feasibility)
» Given A € 7™*" b € 7™. Does there exist x € R with
Ax =b,x =0?

> Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.

Is this problem in NP or even in P?
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The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)1+1

» Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

L(M) := > [log,(Imj]) + 1]
i,]
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is ©(L([A|b])).



> In the following we sometimes refer to L := L([A|b]) as the
input size (even though the real input size is something in
O(L([Alb]))).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L([A|b])).

T
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Suppose that Ax = b; x = 0 is feasible.
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Suppose that Ax = b; x = 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xp = Aﬁlb

and all other entries in x are O.
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Size of a Basic Feasible Solution

Lemma 47

Let M € 7™"™ be agn invertable matrix and let b € 7™ . Further
define L' = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components x j of the form %, where |D ;| < 2L and
ID| < 2L,
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Size of a Basic Feasible Solution

Lemma 47

Let M € 7™*™ be an invertable matrix and let b € 7™. Further
define L' = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components x j of the form %, where |D ;| < 2L and
ID| < 2L,

Proof:
Cramers rules says that we can compute x; as

det(M;)

Xi T det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.
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Bounding the Determinant

Let X = Ap. Then

|det(X)]
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Bounding the Determinant

Let X = Ap. Then

detx)| = | S sgn() [] Xineo

TESH l<izn
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Bounding the Determinant

Let X = Ap. Then

|det(X)] > sgn(m) [] Xiri)

TESH l<izn

> T Xino!

mesSy 1<i<n

IA
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Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xima)
TESH l<izn
< > ] Xinl

TESy 1<i<n
<nl- 2L([A|b])

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke
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Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xima)
TESH l<izn
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Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xima)
TESH l<izn
< > ] Xinl

mesSy 1<i<n

<n!.2LUAIPD o ynol o oL"
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Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [[ Xin@
TESH l<izn
< > ] Xinl

mesSy 1<i<n

<n!.2LUAIPD o ynol o oL"

Analogously for det(M;).
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This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.
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number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.
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This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.
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This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

Hence, LP feasibility is in NP.
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Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint c’x — &8 = M; 6§ = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22l ,
10g2 <W> =0(") ’

as the range of the search is at most —n22L" ... 122" and the
distance between two adjacent values is at least m > 2%
Here we use L' = L([A | b | c]) + nlog, n (it also includes the
encoding size of ¢).



How do we detect whether the LP is unbounded?
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How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.
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How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢’ x > Mpyax + 1 and check for feasibility.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke



Ellipsoid Method
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).
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Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.
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Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
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Ellipsoid Method

>

>

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

Compute (smallest)
ellipsoid E’ that
contains K N H.

T
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

> REPEAT
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» What if the polytop K is unbounded?
» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a
non-empty polytop?
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Definition 48
A mapping f : R" — R™ with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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Definition 49
A ball in R™ with center ¢ and radius 7 is given by

B(c,v)={x|(x—-c)T(x-c) <7r?}

={x|D(x-02/r* <1}

B(0,1) is called the unit ball.
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Definition 50
An affine transformation of the unit ball is called an ellipsoid.
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Definition 50
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).
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Definition 50
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1))
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Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1)) ={f(x) | x € B(0,1)}
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Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}
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Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" [ (y-0TL L1 (y-t) <1}
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Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}
—{yeR" | (y-0TL L Y y-—1) <1}
={yeR"|(y-Hloty-t) <1}

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke



Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" | (y-0TL L Y y-—1) <1}
={yeR" | (y-t)lQ Y (y-t) <1}

where Q = LLT is an invertible matrix.
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How to Compute the New Ellipsoid
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

A}
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x;. Hence,

¢ =te; fort > 0.
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The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.

» The vectors e, e2,... have to fulfill the ellipsoid constraint
. . A1 Ar—1 A1
with equality. Hence (e; —¢)TQ" (e; —¢') = 1.
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The Easy Case

. .ooa,1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.
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The Easy Case

. .ooa,1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.

> Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.
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The Easy Case

» The obtain the matrix O’ for our ellipsoid £ note that £

is axis-parallel.

Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

The matrix
a 0 0
- b
L' =
: . . 0
0O ... 0 b

maps the unit ball (via function /' (x) = ' x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.

T
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The Easy Case

>ASQ'=

L

7

L

t oA
" the matrix Q'

~!is of the form
50 0
) 0
0 0

T

EADS Il
©Harald Racke

9 The Ellipsoid Algorithm



The Easy Case

A1 A/_]- A .
» (e1—¢)TQ" (e1 —¢') =1 gives

T

1—t % o ... O 1—t
1 .
0 0 42 0 .
. . 0 .
0 0 0 # 0
» This gives (1 —t)2 = a?.
EADS I 9 The Ellipsoid Algorithm & E

©Harald Racke



The Easy Case

» For i # 1 the equation (e; — c"’)TQ’_l(ei —¢’) =1 gives

N1 t
- - 0 ... O N
a?l
1 0 1 - : 1
0 . b? o 0 =1
: Do 0 :
: 0 0o 4 :
0 . bz 0
» This gives 2 + 32z = 1, and hence
1 t?
-l e
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The Easy Case

» For i # 1 the equation (e; — c"’)TQ’_l(ei —¢’) =1 gives

N1 t
N - 0 ... 0 B
a?l
1 0 1 - : 1
0 . b? o 0 =1
: Do 0 :
: 0 0o 4 :
0 . bz 0
» This gives 2 + 32z = 1, and hence
2 2
D L L
b2 az? (1-1)2
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The Easy Case

» For i # 1 the equation (e; — c"’)TQ’_l(ei —¢’) =1 gives

LN t
N = 0 .0 B
a?l
1 0 L 1
0 b? 0 (=1
: . 0 :
: 0 0o 4 :
0 . b2 0
» This gives 2+ > = 1, and hence
i—l—ﬁﬂ— 2 1-2t
b2~ a? (1-1)2 (1-1)2
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Summary

So far we have

1-t
=1-t d b=——
“ o -2t
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The Easy Case

We still have many choices for ¢:
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We want to choose t such that the volume of £’ is minimal.
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The Easy Case

We want to choose t such that the volume of £’ is minimal.

Lemma 51
Let L be an affine transformation and K < R™. Then

vol(L(K)) = |det(L)| - vol(K) .
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n-dimensional volume
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where Q' = 11",
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where O = /1",

» We have
1
Lo 0 a 0
LR .
Pt o O b " | and L' =
0 0 3 0 0 b
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where O = /1",

» We have
1
Lo 0 a o 0
- .
Pt o O b " | and L' =
0 0 3 0 0 b

» Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E")

©Harald Racke

9 The Ellipsoid Algorithm



The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]
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The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]
=vol(B(0,1)) - ab™!
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The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]

=vol(B(0,1)) - ab™!

=vol(B(0,1)) - (1 —1¢) - (

1-—
1 -

t
2

t

e

©Harald Racke
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The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]

=vol(B(0,1)) - ab™!
=vol(B(0,1)) - (1 —t) - (

=vol(B(0,1)) -

1-t

V1=2t
_a-on
(V1 =2t)n"1

e

©Harald Racke
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The Easy Case

dvol(E")
dt

©Harald Racke
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The Easy Case

A ()

- (VI-20)n!
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The Easy Case

dvol(E’) _i( (1-0n )
dt  dt \(VI-20)"!
1
-
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The Easy Case

dvol(E') ( 1-p" )
dt (V1T =2t)n"1
G( 1) -n(1-t)r !

derivative of numerator |

2‘»—* Q‘“Q-'
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The Easy Case

dvol(E')
dt

2‘»—* Q‘“Q-'

(s

(1r-o" )
(/1_ )nl

(( D-n(1-6)" 1.

\/;n 1

denominator

©Harald Racke
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The Easy Case

dvol(E")
dt

~ai (i 20m1)

= % : ((—1) (-0 (V1-20"!

~(m-1K1-20)"?2

©Harald Racke
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The Easy Case

dvol(E’) _i( (1-0n )
dt  dt \(V1-20n!
= % : ((—1) n(1-0" . (1-20)n!

i —opn-2, L
(n—1)(V1=2t) s (2

inner derivative
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The Easy Case

dvolE) _ d (-0 )
dt  dt \(V1T-2p)n!
= % : ((—1) (-0 (V1-20"!
1
~(n-1E1-20)"2. S(=2)- (1 -t
2J1-2t
9 The Ellipsoid Algorithm =] =
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The Easy Case

dvol(E") d( (1-t)" )

dt dt \(v1I =21
_ % . ((—1) n(1-" . 1-2t)n!
_ — —_ 1’[72_ 1 . — . — n
(n-1)~1-2t) =2 (=2)- (1 t))

1 n— n-—
=W-(\/1—2t) S.a-pnt
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The Easy Case

dvol(E")
dt

d (1-t)"
= 3t (gr=201) .

_ 1 ((_1) -n(l1 —t)n L W

-
—m-nGI-20m?. L (.a- t)”)

2V1 -2t
1 n-— n-—
=2 Wi-20) 51—t

©Harald Racke
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The Easy Case

dvol(E") d( (1-t)" )

dt dt \(vV1-2t)n! 1 — ot
= % : ((—1) n(l - (e T

- NPT (-2) - (1 t)”)

1 n— n-—
=W-(\/1—2t) S.a-pnt
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The Easy Case

dt (V1=2t)n-1 1 — ot
(( 1) - n(—t7 T (21T

—(n—l)(;ﬂéfi N .27;%.(_2).(1_” )
1 n— n-—
=W-(\/1—2t) .-t

dvol(E") di< (1-t)" )
1
= N2
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The Easy Case

dt (V1=2t)n-1 1 — ot
(( 1) - n(—t7 T (21T
1-t

~(n -1 LA—20" -27%-(—2)-1,1/4‘)’”
1 n— n-—
=W-(\/1—2t) S.1-nn!

dvol(E") di< (1-t)" )
1
= N2

)
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The Easy Case

dvol(E') d ( (1-6" )

~ar — n—1
dt t \(V1-2t) 12t

:le'(<—1>-nu/ﬁ*"f-(ml
1-t¢
_ 1
#(n—1)1—27) Lﬁ%ﬂ/ﬁ”

1 n— n-—
=ﬁ-(\/1—2t) .-t

)
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The Easy Case

dvol(E') d ( (1-6" )

~ar — n—1
dt t \(V1-2t) 12t

= % . ((—1) n(L—t T (2T
1-t¢
= 1
#(n - 1) [1—217 Z%%W>
1 n— n—
=ﬁ-(\/1—2t) 51—t

. ((n— DA-t)-n( - 2t))
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The Easy Case

dvol(E') d ( (1-6" )

~ar — n—1
dt t \(V1-2t) 1—2¢

- e (0 nper T T
1-t
_ 1
#(n - 1) 1217 Z%%ﬂ/ﬁn)
1 n— n—
=ﬁ-(\/1—2t) S.(1-pnt
-((n—l)(l—t)—n(l—Zt))

=$-( 1—2t)"3-(1—t)"1-((n+1)t—1)
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t= n and b =
n+1
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t= n and b =
n+1

1-t

1-2t
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The Easy Case

» We obtain the minimum for t =

» For this value we obtain

a=1-t= n and b
n+1

L

n+1-

1-t

1-2t

n2 -1

©Harald Racke
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 n+1 T-2t JnZ-1

To see the equation for b, observe that

b2
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 nil T-2t JnZ-1
To see the equation for b, observe that

(1 -1t)?

2 _
b* = 1-2t
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 n+1 T-2t JnZ-1

To see the equation for b, observe that

1-02  (1-59)?
1-2t 1--2

n+1

b* =
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The Easy Case

» We obtain the minimum for t = ni

[l ‘

» For this value we obtain

a=1-t= n and b =
n+

To see the equation for b, observe that

(1-1)? _,(1 — n+1)2 (n+1)2
1-2t 1 - -2 n-1

n+1 n+1

b* =

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke



The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 nil T-2t JnZ-1
To see the equation for b, observe that
bhe = (1-1)° _ (1_n+1)2 (n+1)2 _ n?
1-2t 1- -2 n-1 ne -1
n+1 n+l
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The Easy Case

_ _vol(F) _
Let y,, = vol(B(0,1))
changes:
Ya

= ab™ ! be the ratio by which the volume

©Harald Racke
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The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:
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The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

2 2 -1
Vi = (n? 7) <n2n— 1>n

1 1 n-1
-(1- 37 O e )
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The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

1 2 1 n-1
) D)
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The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

1 2 1 n-1
) D)
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The Easy Case

vol(E")

Let yn = woiso1) = @b ! be the ratio by which the volume

changes:

1 2 1 n-1
:<1_n+1) <1+ (n—l)(n+1)>

where we used (1 + x)% < e** forx € Rand a > 0.
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The Easy Case

vol(E")

Let yn = woiso1) = @b ! be the ratio by which the volume

changes:

1 2 1 n-1
:<1_n+1) <1+ (n—l)(n+1)>

where we used (1 + x)% < e** forx € Rand a > 0.

1
This gives y, < e 20=1),
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How to Compute the New Ellipsoid

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke



How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

A}
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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Our progress is the same:
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Our progress is the same:

R vol(E") _ Vol(E"A’) _ Vol(R(E"A’))
~ vol(B(0,1))  vol(E)  vol(R(E))
_ vol(E")
~ vol(E)
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Our progress is the same:

1 vol(E") B vol(E") B vol(R(E"))

e 2+ >

~ vol(B(0,1))  vol(E)  vol(R(E))
_ Vol(E') _ vol(f(E"))
~ vol(E)  vol(f(E))

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke



Our progress is the same:

1 vol(E") B vol(E") B vol(R(E"))

e 2+ >

~ vol(B(0,1))  vol(E)  vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")
~ vol(E)  vol(f(E))  vol(E)
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Our progress is the same:

. vol(E") _ vol(E") _ vol(R(E"))
“vol(B(0,1))  vol(E)  vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")

~ vol(E)  vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx + t changes the volume by factor det(L).
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The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};
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The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | al (x — ¢) < 0};

FYH) = {fHx) lal(x —c) <0}
={fYf) lal (f(y)—-c) <0}
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The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};
fHH) = {f ) lal(x—¢) <0}

={fYf) lal (f(y)—-c) <0}
={ylal(f(y)-c) <0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | al (x — ¢) < 0};
SHH) = {f71 ) lal (x - ¢) <0}
= {1 la’ (f(y) —c) <0}

={yla'(f(y)-c) =<0}
={y|aT(Ly+c—c)sO}
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The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

SHH) = {f ') aT(x—¢) =0}
={f YN la’(f(y)-c) <0}
={yla'(f(y)-c) <0}
={ylal(Ly +c-c) <0}
={y|(a'L)y <0}
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The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | al (x — ¢) < 0};
fHH) = {f ) lal(x—¢) <0}
={f YO lal (f(y) —c) <0}
={yla'(f(y)—c) <0}

= {yIaT(Ly+c—c) < 0}
={y|(@'L)y <0}

This means a = LTa.
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1( LTOl >: LTGl

—el - =R-e]
ILTall ILTall



The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1( LTOl >: LTGl

—el - =R-e]
ILTall ILTall

Hence,



The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1( LTOl >: LTGl

—el - =R-e]
ILTall ILTall

Hence,



The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(HLTaH> ILTall
Hence,
-, nr 1
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal



The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal
c=fE)=L-¢"+c
1 LT
= L a +cC

n+1 |LTa|



The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
=—e ——=—-=R-e
(nLTan) ! ILTall !
Hence,
’ A7 1 1 LTa
7 =R-¢" =R - - - =
¢ ¢ n+19 T Tus1LTal

o
Il

‘= f@)=L-¢ +c
1 LTa
= - L +c
n+1 |[LTal

1 Qa

n+1 /aTQa




For computing the matrix Q' of the new ellipsoid we assume in
the following that £/, E” and E’ refer to the ellispoids centered in
the origin.
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Recall that

at 0 0
A, 0 b2
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This gives
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Recall that
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Q = .

0 0 b2

This gives
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A n 2
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Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
r_ I— T
. n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

2 2
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Recall that
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A, 0 b2
Q = .

0 0 b2

This gives
2
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Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
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Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
r_ I— T
. n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

2 2

2 n 2n

2 g2 _ B
b bn+1 nz-1 m-1)(n+1)2

n?n+1) —2n? n’n-1) )
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9 The Ellipsoid Algorithm

E' =R(E)
= {R(x) [ xTO" 'x <1}
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9 The Ellipsoid Algorithm

F' =R(E")
= {R(x) | xT0" 'x <1}
= {y | (R"1)TO 'Ry < 1}
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9 The Ellipsoid Algorithm

E' =R(E)
—R(x) | xTQ 'x <1}
-y I RNTO 'Ry < 13
— v [yT®RN QR 1y <1
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9 The Ellipsoid Algorithm

E' =R(E)
= {R(x) | xTQ 'x <1}
=y | RTQ 'Ry <1
— v [yT®RN QR 1y <1
={y 1 y"(RQ'RT) 'y < 1}
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9 The Ellipsoid Algorithm

Hence,
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Hence,
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9 The Ellipsoid Algorithm

Hence,
Q/:RQIRT
2
n
=R- I- e
n2—1( n+1t
2
n 2
_ R_RT_
n2—1< n+1

elT) -RT

(Re1)(Re1)T)
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9 The Ellipsoid Algorithm

Hence,

n

2

n

2

'nz—l(l_nntl

ne -1

n

2

e1e1T> -RT

2
1 (Re1)(Ren)")

(R-RT—

n2 -1

(1 2 LTomTL)
n+1|LTal?

©Harald Racke
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9 The Ellipsoid Algorithm
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9 The Ellipsoid Algorithm

E' =L(E")
= {Lx) [ xTQ 'x <1}
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9 The Ellipsoid Algorithm

E' = L(E')
= (L) | xTQ 'x <1}
=y @I 'Ly <1}
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E = L(E)
= {Lx) [ xTQ 'x <1}
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=y YT QT Ly < 1}
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9 The Ellipsoid Algorithm

E' =L(E")
= {Lx) [ xTQ 'x <1}
@'y Ly <1
=y yTaH Q'L y < 13
={yIyTaQ'LH 'y <1j
o
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Hence,
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Hence,
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9 The Ellipsoid Algorithm

Hence,
Q =LQ'L"
_ n? ( 2 LTaaTL
T o n2-1 n+1 a’Qa
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9 The Ellipsoid Algorithm

Hence,
Q' =1Q'L’
—L- n2 ( 2 L'aad'L
B -1 n+1 a’Qa
(Q 2 QaaTQ>
n2 -1 n+1 alQa

)
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:. Q =M

4: repeat

5 if c € K then return ¢

6
7

else
choose a violated hyperplane a
1 Qa
8: cC —Cc-— —_—
n+1 /aTQa
2 T
_ n 2 Qaa'Q
% Q n2—1<Q n+1 aTQa)
10: endif
11: until 77?7

12: return “K is empty”




Repeat: Size of basic solutions

Lemma 52

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n(amax)+2nlog2 n
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Repeat: Size of basic solutions

Lemma 52

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n(amax)+2nlog2 n

In the following we use § := 22" {@max)+2nlog n

Note that here we have P = {x | Ax < b}. The previous lemmas
we had about the size of feasible solutions were slightly
different as they were for different polytopes.
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Repeat: Size of basic solutions

Proof:

_ A —-A
LetAz[

-A A
vector after transforming the system to standard form.

Im], b= (_bb>, be the matrix and right-hand

The determinant of the matrices Ag and M; (matrix obt. when
replacing the j-th column of Ag by b) can become at most

det(Ap), det(M;) < [[fmaxl*"

< ( /27’1 . 2(amax>)2n < 22n<amax)+2nlog2n ,

where Emax is the longest column-vector that can be obtained
after deleting all but 21 rows and columns from A.

This holds because columns from I,,, selected when going from
A to Ap do not increase the determinant. Only the at most 2n
columns from matrices A and —A that A consists of contribute.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.
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bounded; it is sufficient to consider basic solutions.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.

Hence, P is contained in the cube -6 < x; < 6.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"B(0,1) < (nd)"B(0,1).
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When can we terminate?

Let P:= {x | Ax < b} with Ae Zand b € Z be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.
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When can we terminate?

Let P:= {x | Ax < b} with Ae Zand b € Z be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.

Consider the following polyhedron

1

P;\:zj(xlesbJr;l\ : },
1

where A = §2 + 1.
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Lemma 53
P, is feasible if and only if P is feasible.
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Lemma 53
P, is feasible if and only if P is feasible.

< obvious!
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Consider the polyhedrons

and



Consider the polyhedrons

and

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.



Consider the polyhedrons

and

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.

P, is bounded since P, and P are bounded.



_ A —A _ b
Let A = [—A A Im],and b= (—b)'

P, feasible implies that there is a basic feasible solution

represented by
1

- 1-
xp =Ag'b + XAgl

(The other x-values are zero)



_ A —A _ b
LetAz[_A A Im],andlo=<_b>.

P, feasible implies that there is a basic feasible solution
represented by

R
xp =Ap'b + XA,gl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.



_ A —-A _ b
LetAz[_A A Im],andlo=<_b).

P, feasible implies that there is a basic feasible solution
represented by

R
xp =Ap'b + XA,gl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(Aglb); <0 < (Aglh); + %(Agli)i



By Cramers rule we get

1

A=l ALy, « - &
(Ag'bli<0 = (Ag'h)i=— g rs

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ag by I.
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By Cramers rule we get

1

(A_Elb)l <0 = (A_Elb)l < —m

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ag by I.

However, we showed that the determinants of Ag and MJ- can
become at most §.
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By Cramers rule we get

1

(A_glk-))l <0 = (A_Elb)l < —m

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ap by I.

However, we showed that the determinants of Ag and MJ- can
become at most §.

Since, we chose A = §2 + 1 this gives a contradiction.
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9 The Ellipsoid Algorithm



Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke



Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
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Proof:
If P, feasible then also P. Let x be feasible for P.
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(Alx +€));

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke



Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(Ax +0)); = (Ax); + (AD);
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl

< bi+laill - 12l
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max>

<b;+ 53
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

n.2(¢1max> 1
Sbi'ﬁ‘fTS i+m

1
Sbl"l‘x
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Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max> _ 1

shit 7 =biv o

1
Sbl"l‘x

Hence, x + Uis feasible for Py which proves the lemma.
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9 The Ellipsoid Algorithm



How many iterations do we need until the volume becomes too
small?
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How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0O,R)) < vol(B(0,71))

Hence,

vol(B(0,R)) )

i>2n+ Dln(vol(B(O,r))

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke



How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0O,R)) < vol(B(0,71))

Hence,

vol(B(0,R)) )
vol(B(0,7))

=2(n+1)ln (n”é" . 63")

i>2(n+1)1n(
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How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2n+1)In (n”é" . 63")

=8nn+1)In(d) +2(n+ 1)nln(n)

i>2(n+1)1n(
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How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2n+1)In (n”é" . 63")
=8n(n+1)In(d) + 2(n+ 1)nin(n)
= O(poly(n, (amax)))

i>mn+nm(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R", radii R and r
2 with K < B(¢,R), and B(x,7) < K for some x
3: output: point x € K or “K is empty”

4: Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5. repeat

6 if c € K then return ¢

7
8

else
choose a violated hyperplane a
1 Qa
9: C < C-—
n+1 /aTQa
2 T
n 2 Qaa'Q
10: - - ===
0 Q nz—l(Q n+1 aTQa>
11: endif

12: until det(Q) < ¥2" // i.e., det(L) <"
13: return “K is empty”




Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
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Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x € R™ and either
» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
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» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
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» a guarantee that a ball of radius 7 is contained in K,
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Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
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Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,
> a separation oracle for K.

The Ellipsoid algorithm requires O (poly(n) - log(R /7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.
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10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
» P={x| Ax <b}; P°:={x | Ax < b}
> interior point algorithm: x € P° throughout the algorithm
» for x € P° define
si(x):=b; — aiTx

as the slack of the i-th constraint

logarithmic barrier function:
m
$(x) = — > log(si(x))
i=1

Penalty for point x; points close to the boundary have a very
large penalty.



picture of barrier function
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Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ %eTvzcl)(x)e



Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ leTVZcb(x)e

2
Gradient:
mo .
Ve (x) = 1;1 oo i=Aldx

where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)



Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ %eTvzcl)(x)e

Gradient:
m 1
\V, = ca; = AT
P (x) El ) a;=A"dy
where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)
Hessian:
m 1
x = Vop(x) i:§1 51002 i A'DiA

with Dy = diag(dy).



op(x) _ 0 <_Zwrln(sr(X))>

axi aXi

; (1n(sr<x)))
~S w, 0 (s:00))

T, (x) axl

; 1 a(hr )

Sr(x) 0x;

a, x

; s,,(x)ai( T )
; SyX)

The i-th entry of the gradient vector is >, w, /s (x) - Ayi. This
gives that the gradient is

Vp(x) = Zwy/sr(x)ay =ATpD,WI1



ax,<y 0 )ZEWVA”(_ST(ic)Z>'aiJ<”(X))

1
=D WAy i———A
; T s (x)2

Note that >, A, ;A = (ATA)ij. Adding the additional factors
wy /sy (x)? can be done with a diagonal matrix.

Hence the Hessian is

Hy, = ATDWDA



Hy is positive semi-definite for x € P°

uTHyu = uTATD2Au = [|DxAull3 = 0
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H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.
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H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°

u'Hyu = |DyAul|3 > 0 foru # 0
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H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = |DyAul|3 > 0 foru # 0

This gives that ¢ (x) is strictly convex.
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H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = |DyAul|3 > 0 foru # 0
This gives that ¢(x) is strictly convex.

lullg, := VvulHyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.
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Points in Ex are feasible!!!
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Dilkin Ellipsoid

Ex={y|(y-x)THx(y —x) <1} ={y | ly — x|y, <1}

Points in Ex are feasible!!!

(v —x)THy(y —x) = (v —x)TATD2A(y - x)

m

(al (y —x))?
si(x)?

I
Ng

-
Il
—

(change of distance to i-th constraint going from x to y)?2

Il
M=

(distance of x to i-th constraint)2

—_

IA
— 5

In order to become infeasible when going from x to  one of the
terms in the sum would need to be larger than 1.



Dilkin Ellipsoids

AN

b
/

|

=T

F v
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Analytic Center

Xac i= argmin,.cp. $(x)

> Xac is solution to

LS|
Vo(x)=> ——a;=0
o silx)

» depends on the description of the polytope

> Xac exists and is unique iff P° is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = oo: optimum solution

x*(t) exists and is unique for all t > 0.
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primal-dual pair:

— max -blz
min ¢ x T
st. A'z+c=0
s.t. Ax <b
z=>0

we assume primal and dual problems are strictly feasible;
rank(A) = n.



Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).
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Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means

tc + Z —a poryrs

or
1

*()a; =0 with z*(t) =
c+ Zzi (H)a; =0 with z}(t) (= T )

» z[(t) is strictly dual feasible
» duality gap between x := x*(t) and z := z*(t) is

cIx+bTz=(-Ax)Tz= %



Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means
tc + —_—
Z - a; x*(t)

or
1

t(b; —alx*(t))

m
c+ > zF(t)a; =0 with zf (1) =
i=1
» z[(t) is strictly dual feasible
» duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(b-Ax)Tz= %

» if this gap is less than 1/Q(2") we can snap to an optimum
point



)

1T L

/
=




Path-following Methods

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function
4 recenter to return to central path

Questions/Remarks
» how do we get to analytic center?

» when is solution “good enough”?

v

(usually) improvement step tries to stay feasible, how?
» recentering step should

> be fast
» not undo (too much of) improvement



Centering Problem

minimize f;(x) = tcTx + ¢p(x)

minimizing this gives point x*(t) on central path



Newton Step at x € P°
~H 'V fi(x)

—~H Y (tc + Vp(x))
= —(ATD2A) Y(tc + ATdy)

AXnt

Newton Iteration:
X =X+ AXnt



Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= [[AxnellHy
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Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= llAxnellHy

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

=A¢(x)? = V()T Axpe

» Ar(x) =0 iff x = x*(t)

» A¢(x) is measure of proximity of x to x™(t)



Convergence of Newtons Method

Theorem 55
If A (x) <1 then

> X4 =X+ Axpy € P° (new point feasible)
> Ar(xy) < Ag(x)?

This means we have quadratic convergence. Very fast.



feasibility:
> Ai(x) = [|[Axntll < 1; hence x lies in the Dilkin ellipsoid
around x.



bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)
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bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

Ar(x*)? = IDL AAx |12
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2
= |(I - D;'D)DAAX|1?

To see the last equality

la%|l + la+bll2=aa+ @’ +bT)(a+Db)



bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

At(xT)? = |IDLAAXEI?
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2
= |[(I - D;'D)DAAXn|I?

To see the last equality

% +lla+bl?=a"a+ (a” +DbT)(a+b)
=@’ +bNHa+aT(a+b)+b"b =|b|?

if al (a + b) = 0.
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DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T



a’(
a+b)

D
A
A
X
nt =
DA(
=D -
=D o X)
= (D_ X
- DII , =
IID)D_II) Ax™t)
I )
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=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy )

a

= Axd (ATD2 AAXG, — ATD2AAxn + ATD DAAX)
= Axd (HyAxgy — HAxnpe + ATD, T - ATDT)
= Axpl (= Vi (x¥) + Vfi(x) + ATD, T — ATDT)



DAAxp = DA(x' — x)
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=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy )

a

= Axd (ATD2 AAXG, — ATD2AAxn + ATD DAAX)
= Axd (HyAxgy — HAxnpe + ATD, T - ATDT)

= Axpl (= Vi (x¥) + Vfi(x) + ATD, T — ATDT)

-0
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DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
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DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= Ax T ATD VW (VWD Al + (I = DTD)VWDAAX )

a

= Axid (ATD WD, AAxg; — ATDWDAAXq + ATD, WDAAX )
= Axd (HyAxgy — HAxne + ATD.WT - ATDWT)

= Axpd (= Vi (x ) + Vfi(x) + ATD,WT - ATDWT)

=0
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bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L II?
< ID+AAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D;'D)DAAXI?
= (I - Dy'D)*1|?
<lU-DI'D)I|*
= [[DAAXQ|I*
= Ar(x)?

The second inequality follows from > ; v < (21-3/1-2)2



Short step barrier method

simplifying assumptions:
» a first central point x*(tg) is given
» x*(t) is computed exactly in each iteration

€ is approximation we are aiming for

start at t = tg, repeat until m/t <e
» compute x*(ut) using Newton starting from x* (t)
> = ut

where y=1+1/(2ym)



gradient of f;+ at (x = x*(t))

Vfi+(x) = Vfir(x) + (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Ap+(x)?
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Vi (x) = Vfi(x)+ (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is
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gradient of f;+ at (x = x*(t))

Vft+(x) = Vfi(x)+ (u—-1)t

= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Avr ()% = (Vfer (X)) THT'V fie (x)
= (u-1)?1"B(BTB)"'BT1

C



gradient of f;+ at (x = x*(t))

Vi (x) = Vfi(x)+ (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Avr ()% = (Vs (X)) TH™'V fi+ (x)
= (u-121TB(BTB)"'BTT B =D.A
<(u-1)°m



gradient of f;+ at (x = x*(t))
Vi (x) = Vfi(x) + (u—1tc
= —(u—1ATD,T

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is
A+ (%)% = (Ve (X)) THIV fi+ (x)
= (u-1°21TB(BTB)"'BTT B =D.A
<(u-1)°m
=1/4

This means we are in the range of quadratic convergence!!!



Number of Iterations

the number of Newton iterations per outer iteration is very
small; in practise only 1 or 2

Number of outer iterations:
We need ty = uXto = m/e. This holds when

_ log(m/(eto))
log(u)

We get a bound of
O(\/mlogﬂ>
€lp

We show how to get a starting point with to = 1/2L. Together
with € ~ 2L we get O(L./m) iterations.
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How to start...

a damped Newton iteration goes in the direction of Axy but
only so far as to not leave the polytope,;
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How to start...

a damped Newton iteration goes in the direction of Axy but
only so far as to not leave the polytope,;

Lemma 56 (without proof)

A damped Newton iteration starting at xo reaches a point with
At(x) < 6 after

St (x0) —min,, fi(y)
0.09

+ O(loglog(1/9))

iterations.
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How to start...

a damped Newton iteration goes in the direction of Axy but
only so far as to not leave the polytope,;

Lemma 56 (without proof)
A damped Newton iteration starting at xo reaches a point with
At(x) < 6 after

St (x0) —min,, fi(y)

0.09 + O(loglog(1/9))

iterations.

This will allow us to quickly reach a point on the central path

(t ~ 2L) when starting very close to it (e.g. at the analytic center).
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = L(A, b) (encoding length)
and A = 22L. Recall that a basis is feasible in the old LP iff it is
feasible in the new LP.
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = L(A, b) (encoding length)
and A = 22l Recall that a basis is feasible in the old LP iff it is
feasible in the new LP.

After, re-normalizing A and b (for integrality) we have that the
point x is at distance at least 1 from every constraint.
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = L(A, b) (encoding length)
and A = 2°L, Recall that a basis is feasible in the old LP iff it is
feasible in the new LP.

After, re-normalizing A and b (for integrality) we have that the
point x is at distance at least 1 from every constraint.

The determinant of the matrix A for a basis B went up by a
factor of 22nL,
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How to reach the analytic center?
Start at xop.
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How to reach the analytic center?
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Choose ¢’ := —=V¢(x).
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Choose ¢’ := —=V¢(x).

xo = x*(1) is point on central path for ¢’ and t = 1.
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How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).
xo = x*(1) is point on central path for ¢’ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/2"L. This requires /mnL outer iterations.
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How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).
xo = x*(1) is point on central path for ¢’ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/2"L. This requires /mnL outer iterations.

Let x.- denote this point.
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How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).
xo = x*(1) is point on central path for ¢’ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/2"L. This requires /mnL outer iterations.

Let x. denote this point.
Let x. denote the point that minimizes
t-cTx+ ¢p(x)

(i.e., same value for t but different ¢, hence, different central
path).
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t-clxe + p(xe)
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t-clxs+p(xe) <t-clxe+Pp(xe) +t-¢Txe

T
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t-clxs+p(xe) <t-cTxe+dp(xe) +t-

<t-clxe+p(xe)+t-¢
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t-clxs+p(xe) <t-cTxe+dp(xe) +t-

<t-cTxe+p(xe) +t-

st-chC+¢>(xc)+t-

10 Karmarkars Algorithm

éTx
T

o>

Xc
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t-clxe + Pplxe) <
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IA

IA

t
t

Tx

o>

cclxe+ p(xe) +t-

o>

TXC

ccTxe+p(xe)+t-¢
ceTx, + b(xe)+t- (ch@ + éTxc)
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Tx

Txc

o>

t-clxs+p(xe) <t-cTxe+dp(xe) +t-

[oNY

(o}

<t-cTxe+p(xe) +t-
<t-cTx.+ b(xe)+t- (ch@ + éTxc)

<t-cTxe+ Pplxe) + 2t2{max) nk

Choosing t = 1/22L)) gijves that the last term becomes very
small. Hence, using damped Newton we can move to a point on
the new central path (for c¢) quickly.
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Tx

Txc

o>

t-clxs+p(xe) <t-cTxe+dp(xe) +t-

[oNY

(o}

<t-cTxe+p(xe) +t-
<t-cTx.+ b(xe)+t- (ch@ + éTxc)

<t-cTxc+ plxc) + 2t2fcmad) pnk

Choosing t = 1/22L)) gijves that the last term becomes very
small. Hence, using damped Newton we can move to a point on
the new central path (for c¢) quickly.

In total for this analysis we require @ (,/mnL) outer iterations
for the whole algorithm.
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Tx

Txc

o>

t-clxs+p(xe) <t-cTxe+dp(xe) +t-
<t-cTxe+p(xe) +t-

[oNY

(o}

<t-cTx.+ b(xe)+t- (ch@ + 6Txc)

<t-cTxc+ plxc) + 2t2fcmad) pnk

Choosing t = 1/22L)) gijves that the last term becomes very
small. Hence, using damped Newton we can move to a point on
the new central path (for c¢) quickly.

In total for this analysis we require @ (,/mnL) outer iterations
for the whole algorithm.

One interation can be implemented in O (m3) time.
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Part Il

Approximation Algorithms

.
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There are many practically important optimization problems that
are NP-hard.
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What can we do?
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» Heuristics.
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There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

» Exploit special structure of instances occurring in practise.
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There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.
» Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.
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Definition 57

An x-approximation for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of « of the

value of an optimal solution.
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Why approximation algorithms?
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» We need algorithms for hard problems.
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> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.
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Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.
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Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?
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Why approximation algorithms?

» We need algorithms for hard problems.

» It gives a rigorous mathematical base for studying
heuristics.

» |t provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?
» Sometimes the results are very pessimistic due to the fact
that an algorithm has to provide a close-to-optimum
solution on every instance.
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Definition 58
An optimization problem P = (7, sol, m, goal) is in NPO if

» x €7 can be decided in polynomial time

v

v € sol(7) can be verified in polynomial time

» m can be computed in polynomial time

v

goal € {min, max}

In other words: the decision problem is there a solution y with
m(x,y) at most/at least z is in NP.
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> x is problem instance
» v is candidate solution

» m*(x) cost/profit of an optimal solution

Definition 59 (Performance Ratio)

m(x,y) m*(x)

R,y = maxj( m*(x) ' m(x,y)

|
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Definition 60 (r-approximation)
An algorithm A is an r-approximation algorithm iff

Vx el:R(x,Ax)) <1,

and A runs in polynomial time.
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Definition 61 (PTAS)
A PTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x]|.

approximation with arbitrary good factor... fast?
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Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule
the jobs on n machines such that the MAKESPAN is minimized.
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Definition 62 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes
as input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x| and 1/€.

approximation with arbitrary good factor... fast!
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Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
subset of total weight at most W s.t. the profit is maximized.
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Definition 63 (APX - approximable)
A problem P from NPO is in APX if there exist a constant v > 1
and an r-approximation algorithm for P.

constant factor approximation...
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Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint
pieces A and B s.t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the
variables that satisfies the maximum number of clauses.
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Problems with polylogarithmic approximation guarantees
» Set Cover

» Minimum Multicut
» Sparsest Cut

» Minimum Bisection

There is an r-approximation with » < ©(log®(|x|)) for some
constant c.

Note that only for some of the above problem a matching lower
bound is known.
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There are really difficult problems!
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There are really difficult problems!

Theorem 64

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.
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There are really difficult problems!

Theorem 64

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.
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There are weird problems!
Asymmetric k-Center admits an @ (log™ n)-approximation.

There is no o(log™ n)-approximation to Asymmetric k-Center
unless NP ¢ DTIME (nlogloglogn)
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Class APX not important in practise.

Instead of saying problem P is in APX one says problem P
admits a 4-approximation.

One only says that a problem is APX-hard.
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A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).
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A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for
maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a
vital role in the design of many approximation algorithms.
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Definition 65
An Integer Linear Program or Integer Program is a Linear
Program in which all variables are required to be integral.
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Definition 65
An Integer Linear Program or Integer Program is a Linear
Program in which all variables are required to be integral.

Definition 66
A Mixed Integer Program is a Linear Program in which a subset
of the variables are required to be integral.
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Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.
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Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is
NP-complete!
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Set Cover

Given a ground set U, a collection of subsets Sy,...,Sy € U,
where the i-th subset S; has weight/cost w;. Find a collection
I<{1,...,k} such that

YueU3diel: ues; (every element is covered)

and
Z w; is minimized.
iel
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Set Cover
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Set Cover
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Set Cover
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Set Cover
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Set Cover
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IP-Formulation of Set Cover

min > WiXg
s.t. VueuU Xiyes Xi
Vie{l,...,k} Xi
Vie{l,...,k} Xi

=
=

integral

m EADS I 12 Integer Programs
©Harald Racke



Vertex Cover

Given a graph G = (V, E) and a weight w, for every node. Find a
vertex subset S < V of minimum weight such that every edge is
incident to at least one vertex in S.
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IP-Formulation of Vertex Cover

min Dvev WuXy
st. Ve=(i,j) €E Xi+ Xj
Vv evVv Xy

> 1
e {0,1}
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Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex
is incident to more than one edge.
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Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.

Find a subset of edges of maximum weight such that no vertex
is incident to more than one edge.

max D ecE WeXe
st. YVveV DiceXe =< 1
Ve e E x. € {0,1}
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Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.
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Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.

Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

max > vey WyXy
s.t. Ve=(i,j)€E xi+x; =< 1
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Knapsack

Given a set of items {1,...,n}, where the i-th item has weight
wj and profit p;, and given a threshold K. Find a subset

I <{1,...,n} of items of total weight at most K such that the
profit is maximized.
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Knapsack

Given a set of items {1,...,n}, where the i-th item has weight
wj and profit p;, and given a threshold K. Find a subset

I <{1,...,n} of items of total weight at most K such that the
profit is maximized.

max L1pixi
s.t. Stiwixi < K
Vie{l,...,n} x; € {0,1}
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Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if
any feasible solution for IP is also feasible for LP and if the
objective values of these solutions are identical in both
programs.
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Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if
any feasible solution for IP is also feasible for LP and if the
objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing x; € [0, 1]
instead of x; € {0, 1}.
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By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization
problem.
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Relations

Maximization Problems:

| OPT(DUAL) |

| FEASIBLE(DUAL) |

X

Minimization Problems:

‘FEASIBLE(DUAL) \ \ OPT(DUAL) \

00
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zé‘:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zif:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {fy,} be the maximum
frequency.
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Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.
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Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.
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Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
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Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.
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Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.
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Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.
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Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

v

We know that >, cq, x; = 1.

v

The sum contains at most f;, < f elements.

v

v

This set will be selected. Hence, u is covered.

Therefore one of the sets that contain u must have x; > 1/f.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

D wi

iel
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1
= f - cost(x)
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

icl i=1
= f - cost(x)
<f-OPT.
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:uESi x;i=1
x;i =0
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2ueU Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
x;i =0 YVu = 0
13.2 Rounding the Dual a =
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;
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Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.
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Technique 2: Rounding the Dual Solution.
Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.
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Technique 2: Rounding the Dual Solution.
Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
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Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

» This means >, cs, Yu < w; for all sets S; that contain u.
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Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

iel
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

=>iel:uesS}  yu
u
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Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel uues;

=>iel:uesS}  yu
u

= quyu
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS}  yu
u
Squyu
u

Sfzyu
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS}  yu
u
Squyu
u
Sfzyu
u

< fcost(x™*)
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
=>Hiel:ueSi} - yu
u
= quyu
m
= fzyu
u

< fcost(x™*)
< f-OPT
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second

algorithm. Then
Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

v

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

Suppose that we take S; in the first algorithm. l.e., i € I.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1y <0

210

3: while exists u ¢ (J;<; S; do

4 increase dual variable y; until constraint for some
new set Sy becomes tight

I—Tu{{¥}

v

T
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

]

S~ §; forall j

while I not a set cover do
¢ —argmin; ., I%JI
I-1u{¥}
Sj—S;j—S; forallj

A vl AW N~

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 70
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

. a; ics Ai a;
mm—l<72165 ! < max -

i bi Xiesbi i by
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wy
min —
J 185
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W W
min 1 < 2.jeoPT vj
i 1851 Xjeort 1)l
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi 2jeopT W) OPT
min . < = <
i 181 Xjeort ISj1 Xjcopr IS
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT

min —— < o <
i 1S5l Z.jGOPT|Sj| zjeopT|Sj| Ny
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT
min —— < o <
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —% < J -
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
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Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§j|.
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Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§’j|.

B IS;IOPT  nyp—ny,,
oy ng

- OPT

wj
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Technique 4: The Greedy Algorithm

D wj

Jjel
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Technique 4: The Greedy Algorithm

S
ny —n
ijg TR opT
jeI {=1
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Technique 4: The Greedy Algorithm

m EADS Il 13.4 Greedy
©Harald Racke



Technique 4: The Greedy Algorithm
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Technique 4: The Greedy Algorithm

=H, - OPT < OPT(Inn +1) .
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Technique 4: The Greedy Algorithm

A tight example:
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[ (1-xj)

j:’I/LESj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=[] Q=-xp) =< [] e

j:’I/LESj j:‘uESj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e* Zj:uGSj Xj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e*Zj:ueijj < 671
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[ (1-xj) < 1_[ e Xi

j:uESj j:ueSj

_ e*Zj:uEijj < 671 .

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0
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Pr[3u € U not covered after £ round]
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u» not covered Vv

< ZPr[ui not covered after € rounds]
i

...V Uy not covered]
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 71
With high probability O (logn) rounds suffice.
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 71
With high probability O (logn) rounds suffice.

With high probability:
For any constant & the number of rounds is at most O(logn)
with probability at least 1 — n~«.
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Proof: We have

Pr[#rounds > (« + 1) Inn] < ne-(@rinn —

n—O(
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Expected Cost

> Version A.
Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost]
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~«
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1
< mlz‘[cost] < m((x +1)Inn - cost(LP)

T
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ( + 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

T
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ( + 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

form=2and x> 1.

T
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 72 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
2poly(logn))_
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Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

v

n=2k_-1
Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

Sy =1{x|xTy =1}

each set contains 2¥~1 vectors; each vector is contained in

T

2k=1 sets
1 2 . . .
> Xi = kT = 41 is fractional solution.
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Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).
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Techniques:

>

>

>

Deterministic Rounding
Rounding of the Dual
Primal Dual

Greedy

Randomized Rounding
Local Search

Rounding Data + Dynamic Programming

T
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Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =) =
©Harald Racke



Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi X;pj-xj; < L
Vjobs j >ixji=1
Vi, j xji € {0,1}

Here the variable x; ; is the decision variable that describes
whether job j is assigned to machine 1i.
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Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.
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Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke



Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

Clearly
3
Chax = mjax P

as the longest job needs to be scheduled somewhere.
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Lower Bounds on the Solution

The average work performed by a machine is % Zj pj.
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Lower Bounds on the Solution

The average work performed by a machine is % 2.jiPj-

Therefore, .
Cl‘T‘laX = % %: pj
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Local Search
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Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.
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Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke



Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.
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Local Search for Scheduling
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Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.
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Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

REPEAT
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Local Search Analysis
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Local Search Analysis

Let £ be the job that finishes last in the produced schedule.
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Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

Let Sy be its start time, and let Cy be its completion time.
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Local Search Analysis

Let £ be the job that finishes last in the produced schedule.
Let Sy be its start time, and let Cy be its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule

would not be locally optimal.
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[T
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We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.
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We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«
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We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l
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We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
pe+— 2. pj
m “

j#l
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We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

w+EZv]=(1——)m+vaJ
j#l
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We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
W+*Zv1=(1—*)ve+*2v1 (2 = —) Cinax
mj#{) m
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A Tight Example

Se
pemSet T
ALG _Sp+pr 2Fmi _, L
OPT Py 1+ -1 m

m-1




A Greedy Strategy
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A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.
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A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.
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A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill
the local optimally condition of our local search algorithm.
Hence, these also give 2-approximations.
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A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.
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Proof:

> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

T
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Proof:
> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).
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Proof:

> Let p; > - - - = p, denote the processing times of a set of

jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

» If py < Ch.x/3 the previous analysis gives us a schedule
length of at most

4
Chax +Pn < =Clax -

3

T
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Proof:
> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

» If py < Ch.x/3 the previous analysis gives us a schedule
length of at most

4
CI?I&X + Pn =< §CI>'I<1aX .
Hence, pyn > Ch.x/3.

» This means that all jobs must have a processing time
> Chax/3-

T
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Proof:

> Let p; = - - - = p,, denote the processing times of a set of

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
Chax +Pn < =Clax -

3
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle
at most two jobs.

T
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Proof:

> Let p; = - - - = p,, denote the processing times of a set of

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
Cfrklax + Pn =< §CI>'I<18.X .
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle
at most two jobs.

For such instances Longest-Processing-Time-First is optimal.

T
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When in an optimal solution a machine can have at most 2 jobs
the optimal solution looks as follows.

P14 P13 pi2 P11 P10 P9 P38

P1 p2 pP3 P4 Ps Pe6 p7
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» We can assume that one machine schedules p; and p,, (the
largest and smallest job).

T
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» We can assume that one machine schedules p; and p,, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

T
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» We can assume that one machine schedules p; and p, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

T
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» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and py, on one machine and p4 and pp on the other,
cannot increase the Makespan.

T
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» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and py, on one machine and p4 and pp on the other,
cannot increase the Makespan.

» Repeat the above argument for the remaining machines.

T
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Tight Example

» 2m + 1 jobs

©Harald Racke

15 Scheduling on Identical Machines: Greedy



Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

oom+10@2m-—2
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
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» 3 jobs of length m
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
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» 3 jobs of length m
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
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» 3 jobs of length m
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
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Tight Example
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Tight Example
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Tight Example
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2
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Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2
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Traveling Salesman

Given a set of cities ({1,...,7}) and a symmetric matrix

C = (cij), cij = 0 that specifies for every pair (i, j) € [n] x [n]
the cost for travelling from city i to city j. Find a permutation 1t
of the cities such that the round-trip cost

n-1

Cn()m(n) + z Crr(i)m(i+1)
i=1

is minimized.
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Traveling Salesman

Theorem 74
There does not exist an O (2™)-approximation algorithm for TSP.
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Traveling Salesman

Theorem 74
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.
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Traveling Salesman
Theorem 74

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.
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Traveling Salesman
Theorem 74

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i, ) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.
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Traveling Salesman

Theorem 74

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".
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Traveling Salesman
Theorem 74

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

» An O(2")-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.
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Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -
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Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

It is convenient to view the input as a complete undirected graph
G = (V,E), where ¢;; for an edge (i, j) defines the distance
between nodes i and j.
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TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.
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TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
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TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.
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TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

» This gives a spanning tree of cost at most OPTsp(G).
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TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.
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TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.
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TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

» Repeat until all nodes have been processed.
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TSP: Greedy Algorithm
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TSP: Greedy Algorithm
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TSP: Greedy Algorithm
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TSP: Greedy Algorithm

©Harald Racke



TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are
taken in Prims algorithm.
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TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.
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TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

m EADS Il 16 TSP &
©Harald Racke



TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € Sj.
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TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.
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TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').
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TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

This increases the cost by

Csi,vg T Cuyry = Copry = ZCSi,Ui
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TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.
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TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

Hence,
> Csivi = OPTusT(G)

1

which with the previous lower bound gives a 2-approximation.
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TSP: A different approach
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TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).
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TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’
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TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

‘m EADS Il 16 TSP &
©Harald Racke



TSP: A different approach
Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.
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TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c(e)

ecE’

> Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.
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TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

> Find an Euler tour of G'.
» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.
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TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).
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TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

Hence, short-cutting gives a tour of cost no more than
2 - OPTysT(G) which means we have a 2-approximation.
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TSP: Can we do better?

@

.
©Harald Racke
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TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
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TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.
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TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd
degree vertices in the MST (note that there are an even number
of them).

m EADS Il 16 TSP & =
©Harald Racke



TSP: Can we do better?
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TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).
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TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

However, the edges of this tour give rise to two disjoint

matchings. One of these matchings must have weight less than
OPT1sp(G)/2.
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TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,
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TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTr1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.
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TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

This is the best that is known.
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Christofides. Tight Example

» optimal tour: n edges.
» MST: n — 1 edges.
» weight of matching (n+1)/2 -1

» MST+matching = 3/2-n
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Tree shortcutting. Tight Example

€

[T

» edges have Euclidean distance.
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17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a
subset I < {1,...,n} of items of total weight at most W such
that the profit is maximized (we can assume each w; < W).
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17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a
subset I < {1,...,n} of items of total weight at most W such
that the profit is maximized (we can assume each w; < W).

max St piXi
s.t. z?:l wix; < W
Vie{l,...,n} x; € {0,1}
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17 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1) < [(0,0), (p1,w1)]

2: forj —2 to ndo

3 A(j) = A(G-1)

4 for each (p,w) € A(j—1) do
5 if w+wj<W then
6

7

8:

add (p + pj,w +wj) to A(j)
remove dominated pairs from A(j)
return maxy w)eam) P

The running time is O(n - min{W,P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.
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17 Rounding Data + Dynamic Programming

Definition 77
An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the

input is encoded in unary.
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17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
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17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
> Set u:=€eM/n.
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17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
> Set u:=€eM/n.
» Set p;:=|pi/u] forall i.
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17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.
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17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

O(nP")
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17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP) =0(n p})
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17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP') =0(n3 pj)=0(n3, [ez\?ﬁj)
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17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

ompP)=0(nY pi)=0n>, [d\’;ﬁj) < 0(":) .
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

=H2 i

ieS

=H2 P

ieO

T
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

=H2 i
[ISNY
=H 2 P
i€0

> > pi—10lu
ie0
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=H 2 P
i€O
> pi—lOlu
ie0

> pi—npu
ieO

%

%
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

D.Piz U P
ieS €S
=H 2 P

i€0
> pi—lOlu
i€0
>, pi—np
i€0

> pi—eM
ie0

%

%
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17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS
=p D p;
i€O
> > pi—10lu
i€eO
> > pi-nu
ie0
=D pi—€eM
i€eO
> (1 -€)OPT .
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Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j#l

where £ is the last job to complete.
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Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j=t

where £ is the last job to complete.

Together with the obervation that if each p; > %ngax then LPT is
optimal this gave a 4/3-approximation.
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17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.
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17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

pj—kmz pi
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17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

p]—kmz pi

Idea:

1. Find the optimum Makespan for the long jobs by brute
force.
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17.2 Scheduling Revisited
Partition the input into long jobs and short jobs.

A job jis called short if

p]—kmz pi

Idea:
1. Find the optimum Makespan for the long jobs by brute

force.
2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

17.2 Scheduling Revisited

©Harald Racke



We still have the inequality

1
— 2 pj+py
j=l

where £ is the last job (this only requires that all machines are
busy before time S)).
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We still have the inequality

1
o 2 Pit P
j=l
where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it
consists of an optimal schedule of long jobs plus a schedule for
short jobs.
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We still have the inequality

1
— 2 pj+py
j=l

where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it
consists of an optimal schedule of long jobs plus a schedule for
short jobs.

If £ is a short job its length is at most

pe <. pjl(mk)

which is at most C./k.
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Hence we get a schedule of length at most

(1+ %)c;;ax
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Hence we get a schedule of length at most

(1+ %)c;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on 11 machines is at most
mKk™_ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.
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Hence we get a schedule of length at most

(1+ %)C;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mkm, which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 78

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [é].
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How to get rid of the requirement that m is constant?
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How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
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How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 + )T or
certifies that no schedule of length at most T exists (assume

T>*Z]l]1)
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How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 + )T or
certifies that no schedule of length at most T exists (assume

T>*ijj)

We partition the jobs into long jobs and short jobs:
» Ajobis long if its size is larger than T/k.
» Otw. it is a short job.
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» We round all long jobs down to multiples of T/k?.

T
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» We round all long jobs down to multiples of T/k?.

> For these rounded sizes we first find an optimal schedule.

T
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» We round all long jobs down to multiples of T/k?.
> For these rounded sizes we first find an optimal schedule.

> If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

T
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v

We round all long jobs down to multiples of T/k2.

v

For these rounded sizes we first find an optimal schedule.

\4

If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

\4

If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.

T
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After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.
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After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).
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After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at

most 1
(1 n E)T .
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During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
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During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that

the new load is at most

T+

=~
|

—
—
+
| =
S—
ﬂ
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Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.
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Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.

Therefore the number of different inputs is at most nk®
(described by a vector of length k? whgre, the i-th entry
describes the number of jobs of size k—lzT). This is polynomial.
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Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k? where, the i-th entry
describes the number of jobs of size kii_,T). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There
are only (k + 1)K different vectors.
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Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k? where, the i-th entry
describes the number of jobs of size kii_,T). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There
are only (k + 1)K different vectors.

This means there are a constant number of different machine
configurations.
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Let OPT(ny,...,n2) be the number of machines that are

required to schedule input vector (n,..
most T.

., Ng2) with Makespan at
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Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.
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Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (1’l1,...,1’lk2)=0
_J 1+ min OPT(m; —5S1,...,M2 — Sg2) (M1,...,Mp2) 2 0
(81,..08,2)EC
00 otw.

where C is the set of all configurations.
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Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (1’l1,...,1’lk2)=0
_J 1+ min OPT(n;—s1,...,n2 —Sk2) (M1,...,n2) 20
(81,..08,2)EC
00 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1)K nk* ~ (nk)¥*.
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We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.
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We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?
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We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.
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We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

Theorem 79
There is no FPTAS for problems that are strongly NP-hard.
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» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

T
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» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

» Weset k:=[2nq(n)] = 20PT

T
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» Suppose we have an instance with polynomially bounded
processing times p; < q(n)
» Weset k:=[2nq(n)] = 20PT

» Then

1 1
ALG < (1 + E> OPT < OPT +;

T
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» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

We set k := [2ngq(n)] = 2 OPT
Then

v

v

1 1
ALG < (1 + E> OPT < OPT +;

v

But this means that the algorithm computes the optimal
solution as the optimum is integral.

T
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Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

T
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Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n,k)) = O(poly(n))

T
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Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n,k)) = O(poly(n))

For strongly NP-complete problems this is not possible
unless P=NP

T
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More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).



More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.



More General
Let OPT(ny,...,n4) be the number of machines that are required to

schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

OPT(nl,...,nA)

(ng,...,na) =0
_J)J 1+ min OPT(nj;-—s1,...,m4—54) (M1,...,m4) =0
(81,..,54)EC
otw

where C is the set of all configurations.

|C| < (B + 1)4, where B is the number of jobs that possibly can fit on

the same machine.

The running time is then O((B + 1)“n*) because the dynamic

programming table has just n4 entries.



Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.
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Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 80
There is no p-approximation for Bin Packing with p < 3/2 unless

P = NP.
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Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

Dbi=>b; ?

ieS ieT
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Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

Dbi=>b; ?

ieS ieT

» We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.
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Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.
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Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

» Hence, such an algorithm can solve Partition.
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Bin Packing

Definition 81
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for

minimization problems.
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Bin Packing

Definition 81
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for

minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS

because of scaling.
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Bin Packing

Definition 81
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS

because of scaling.
» However, we will develop an APTAS for Bin Packing.
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Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of

size at most y s.t. we use only max{¥, 1}—ySIZE(I) + 1} bins,

where SIZE(I) = >.; s; is the sum of all item sizes.
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Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.
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Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.
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Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.
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Choose y = €/2. Then we either use £ bins or at most

1
1-¢€/2

-OPT+1<(1+¢€)-0PT+1

bins.

It remains to find an algorithm for the large items.
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Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.
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Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.
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Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;
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Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

T
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Linear Grouping
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Linear Grouping
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Linear Grouping
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Linear Grouping
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Lemma 83
OPT(I') < OPT(I) < OPT(I') + k
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Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.
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Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;
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Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

T
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Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

T
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Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
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Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;
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Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing & =
©Harald Racke



Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;
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Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.



Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.



Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used | ] > /2 for
x> 1).



Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used | ] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.



Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used | ] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.



Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used | ] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.

» cost (for large items) at most

OPT(I') + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time O((%n)“/ez).



Can we do better?
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Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .
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Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

Note that this is usually better than a guarantee of

(1 +€)OPT() +1 .
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Configuration LP

Change of Notation:

» Group pieces of identical size.
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Configuration LP

Change of Notation:
» Group pieces of identical size.

> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
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Configuration LP

Change of Notation:
» Group pieces of identical size.

> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
> s> is second largest size and b, number of pieces of size sp;
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Configuration LP

Change of Notation:
» Group pieces of identical size.
> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
> s> is second largest size and b, number of pieces of size sp;

> LR
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Configuration LP

Change of Notation:

>

>

Group pieces of identical size.

Let 51 denote the largest size, and let b; denote the number
of pieces of size s;.

s> is second largest size and b> number of pieces of size s;

Sm smallest size and b,, number of pieces of size s;,.

T
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Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
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Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i
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Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

We call a vector that fulfills the above constraint a configuration.
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Configuration LP

©Harald Racke

17.4 Advanced Rounding for Bin Packing



Configuration LP

Let N be the number of configurations (exponential).
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Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).
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Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

min Z?lej

s.t. Vie{l...m} z]}]:l Tjixj > b;
Vje{l,...,N} Xj > 0
vje{l,...,N} x; integral
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How to solve this LP?

later...
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We can assume that each item has size at least 1/SIZE(I).
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Harmonic Grouping

» Sort items according to size (monotonically decreasing).
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Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new

group.
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Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new

group.
> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.
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Harmonic Grouping

» Sort items according to size (monotonically decreasing).

» Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new
group.

> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

» Only the size of items in the last group G, may sum up to
less than 2.

T
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Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.
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Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.
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Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.

» For groups G»,...,G,_1 delete n; — n;_; items.
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Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.
» For groups G»,...,G,_1 delete n; — n;_; items.

» Observe that n; > n;_;.
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Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.
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Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.
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Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.
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Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

» All items in a group have the same size in I'.
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Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).



Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.



Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
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Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

» It discards n; — n;_1 pieces of total size at most

, o3
ni —ni_1 - Z
ni B

3 -
j=ni+1

since the smallest piece has size at most 3/n;.



Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

» It discards n; — n;_1 pieces of total size at most

n; —n; Hoo3
3 i -1 < 2
ng Z J

J=ni1+1

since the smallest piece has size at most 3/n;.

» Summing over all i that have n; > n;_ gives a bound of at

most
Ny-1

> 5 < O(log(SIZE(I))) .

j=1J

(note that n, < SIZE(I) since we assume that the size of
each item is at least 1/SIZE(I)).



Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I’; pack
discarded items in at most @ (log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack [xj] bins in configuration T; for all j; call the
packed instance I;.

6: Let I> be remaining pieces from I’

7: Pack I via BinPack(I»)
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Analysis

OPTyp(I7) + OPTip(I2) < OPTip(I') < OPT1p(I)

T
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Analysis

OPTLP(Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

T
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Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

> |xj]| is feasible solution for I; (even integral).
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Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

> |xj]| is feasible solution for I; (even integral).
» xj—|x;]|is feasible solution for I5.
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Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
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Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

2. Pieces scheduled because they are in I.
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Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I> are handed down to the next level.
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Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed
into at most OPTip many bins.
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Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed
into at most OPTip many bins.

Pieces of type 1 are packed into at most
O(og(SIZE(I))) - L

many bins where L is the number of recursion levels.
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Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.
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Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).
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Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

» The total size of items in I> can be at most Z?Ll xj—1xjl
which is at most the number of non-zero entries in the
solution to the configuration LP.
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How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).
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How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
Solls Vie{l...m} Z]Jylejin > b;
Vje{l,...,N} xj = 0
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How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a

configuration T has Tj; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
Solls Vie{l...m} Z]Jylejin > b;
vje{l,...,N} xj = 0
Dual
max it yib;
sit. Vje{l,...,.N} X Tjyi < 1
Vie{l,..., m} yvi = 0
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Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?
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Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that
» is feasible, i.e.,

m
ZTji-SiSI,
i=1
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Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

» is feasible, i.e.,

m
ZTﬁ-SiSI,
i=1

» and has a large profit

m
> Tjiyi>1
i=1

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke



Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

» is feasible, i.e.,

m
ZTﬁ-SiSI,
i=1

» and has a large profit

m
> Tjiyi>1
i=1

But this is the Knapsack problem.
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We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.



Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max St yibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0




Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max >t yvibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0
Primal’
min (1+¢€) Zlle Xj
S.t. Vie{l...m} Eylejin > by
vje{l,...,N} xj = 0
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If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT
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How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.



Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.
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» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

» Let DUAL" be DUAL without unused constraints.
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If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

» Let DUAL” be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.



Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

>

The constraints used when computing z certify that the
solution is feasible for DUAL'.

Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Let DUAL" be DUAL without unused constraints.

The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

The optimum value for PRIMAL" is at most (1 + €')OPT.



Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

>

The constraints used when computing z certify that the
solution is feasible for DUAL'.

Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Let DUAL" be DUAL without unused constraints.

The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

The optimum value for PRIMAL" is at most (1 + €')OPT.

We can compute the corresponding solution in polytime.



This gives that overall we need at most
(1 + €)OPTrp(I) + O(log? (SIZE(I)))

bins.
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This gives that overall we need at most
(1 + €)OPTrp(I) + O(log? (SIZE(I)))
bins.

We can choose ¢’ = % as OPT < #items and since we have a
fully polynomial time approximation scheme (FPTAS) for
knapsack.
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Lemma 87 (Chernoff Bounds)

Let X1,...,Xn ben independent 0-1 random variables, not
necessarily identically distributed. Then for X = > | X; and
Uu=E[X],L<u=<U,andd >0

el v
PriX > (1 + 5)U] < ((1-|—5)1+6) ,

and

e o t
PrlX < (1-0)L] < <(1_5)15) ,
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Lemma 88
For 0 < 6 <1 we have that

5 U
e ) < ,U8s
(1 + 5)1+6 -

e o t 2
((1 - 6)1—5) se s

and
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Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then
Pr(X = a] <E[X]/a

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke



Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then
Pr(X = a] <E[X]/a

Trivial!
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Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

E[X]

(1+6)U

m EADS Il 18.1 Chernoff Bounds
©Harald Racke



Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

E[X] 1

1+6)U 1+6
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Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

That’s awfully weak :(

E[X] 1

1+6)U 1+6
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Proof of Chernoff Bounds

Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
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Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke



Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

Now, we apply Markov:

E[etX]
tx t(1+6)U
Pr[e'* > e ] < SI0)0
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Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

Now, we apply Markov:

E[etX]
tx t(1+6)U
Pr[e'* > e ] < SI0)0

This may be a lot better (1?)
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Proof of Chernoff Bounds

E [etx]
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Proof of Chernoff Bounds

E [etX] =E [etzl'xi]
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Proof of Chernoff Bounds

Elet] =kl <[ T,
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Proof of Chernoff Bounds

£[e] [0 -6 T - ][]

.
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Proof of Chernoff Bounds

£[e] [0 -6 T - ][]

E [etxi]

.
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Proof of Chernoff Bounds

£[e] [0 -6 T - ][]

E[eti] = (1-p;) + pie*

.
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Proof of Chernoff Bounds

£[e] - e[ B[], - T[]

E[etXi] =(1- pi) + piet =1+ pi(et -1)

.
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Proof of Chernoff Bounds

£[e] [0 -6 T - ][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V
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Proof of Chernoff Bounds

£[e] [0 -6 T - ][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

[LE [etxi]

.
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Proof of Chernoff Bounds

£[e] [0 -6 T - ][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

niE [etXi] < niepi(et—l)
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Proof of Chernoff Bounds

o] - B[er5] - B[ T e%] - T[]
E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

[T,E [etXi] < ﬂiepi(et_” — eXpile'=1)
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Proof of Chernoff Bounds

£[e] - e[e5] - £[T,0] - ] e[
E [etxi] = (1-p) +piet =1+pie! —1) < erit®-V

[[E [etxi] < ]_[l,epi(et—l) _ eXpilet=1) _ ,(et-1)U

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke



Now, we apply Markov:

PriX = (1 +9)U]

Pr[etX > et(1+5)U]

E[etX]

= ot(1+0)U

©Harald Racke
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Now, we apply Markov:

Pr[X = (1 + 6)U] = PretX = !(1+9U]
E[etX]  ele'-DU

= ol U = ot(1+8)U
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Now, we apply Markov:

Pr[X = (1 + 6)U] = Pr[e'X = ot (1+9)U]

E[etX] e(et—l)U

We choose t = In(1 + 9).
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Now, we apply Markov:

Pr[X = (1 + 6)U] = PretX = !(1+9U]
E[etX]  ele'-DU

ed

T et(1+8)U = pt(1+6)U —

We choose t = In(1 + 6).

<

(1+ 5)1+6

z
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Lemma 89
For 0 < 6 <1 we have that

5 U
e ) < ,U8s
(1 + 5)1+6 -

e o t 2
((1 - 6)1—5) se s

and
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Show:

(

e v
) < e7U62/3

(1+ 5)1+6

[T

EADS Il
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Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3
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Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

True for 6 = 0.
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Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

True for 6 = 0. Divide by U and take derivatives:

—-In(1+6) <-26/3

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.
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f6):=—-In(1+6)+25/3<0

[T
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f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.
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f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1

FO=-175

+2/3
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f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1 v 1
Tve P23 (5)_(1+5)2

f1(6) =~
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f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1 v 1
Tve P23 (5)_(1+5)2

f1(6) =~

F(0)=0and f(1) = —1In(2) +2/3 <0
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For 6 = 1 we show

(

e v
) < o USI3

(1+ 5)1+6
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18.1 Chernoff Bounds



For 6 = 1 we show

e? v -US/3
((1 + 5)1+6> =e

Take logarithms:

UWGb-1+6)In(1+6)) <-Ud/3
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For 6 = 1 we show

e? v -US/3
((1 +5)1+6> =e

Take logarithms:

UWGb-1+6)In(1+6)) <-Ud/3

True for 6 = 0.
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For 6 = 1 we show
U
e < »-Ud/3
(1+ 5)1+5 =€

Take logarithms:

UWB-(1+6)In(1+6)) <-Ud/3

True for 6 = 0. Divide by U and take derivatives:

—-In(1+6) <-1/3 < In(1+6)=1/3 (true)

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.
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Show:

(

-5 L
e ) < o-L8%/2

(1- 5)1—6

[T
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Show:
6_5 L 2
((1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2
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Show:
6_5 L 2
((1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

True for 6 = 0.
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Show:
8_5 L 2
<(1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

True for 6 = 0. Divide by L and take derivatives:

In(1-6)=<-6

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.
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In(1-96)=<-¢

[T
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True for 6 = 0.

In(1-6)=<-6
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In(1-6)=<-6

True for 6 = 0. Take derivatives:
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In(1-6)=<-6

True for 6 = 0. Take derivatives:

This holds for 0 < 6 < 1.
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Integer Multicommodity Flows

» Given s;-t; pairs in a graph.

» Connect each pair by a path such that not too many path

use any given edge.

T

min w
S-t- vi zpeg)i Xp = 1
Zp:eep Xp = W
xp € {0,1}
EADS Il 18.1 Chernoff Bounds & =
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Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set 2°; at random according
to the probability distribution given by the Linear Programming
solution.
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Theorem 90
If W* > clnn for some constant c, then with probability at least
n=</3 the total number of paths using any edge is at most

W* + /cW*Inn.

Theorem 91
With probability at least n=¢/3 the total number of paths using
any edge is at most W* + cInn.
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Integer Multicommodity Flows
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Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.
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Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.
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Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.
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Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

EY]=3 3 x;

i pePiecp

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke



Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

ElYll=> > xp= > xh=<w*

i pePiecp pecP
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Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.
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Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

Then
Pr[Y, = (1 + 8)W*] < e W*8%/3 =

1

ne/3
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Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.
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19 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.

» Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.
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19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.
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Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

m EADS Il 19 MAXSAT =)
©Harald Racke



19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.
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» We assume a clause does not contain x; and Xx; for any i.

m EADS Il 19 MAXSAT =)
©Harald Racke



19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.
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Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with £;.
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19 MAXSAT

Terminology:
» A variable x; and its negation x; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with ;.

» Clauses of length one are called unit clauses.
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MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).
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Define random variable X with

X = 1 if C; satisfied
7L 0 otw.
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Define random variable X; with

X = 1 if C; satisfied
771 0 otw.

Then the total weight W of satisfied clauses is given by

W = Z‘LUJ'XJ'
J
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E[W] = > wjE[X/]
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E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]
J
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E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]
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E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

=§wj<1—(§)€j)
= ;%wj

OPT

=

1
2

T
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MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/xi\/ \/)_Ci

jGPJ' jGNJ'
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MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/xi\/ \/)_Ci

jGPJ' jENJ'
max 2jw;zj
s.t. Vj Zier i+ ZieNj(l -Yi) = zj
Vi yi € {0,1}
Vj zZj = 1
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MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and,
hence, to false with probability (1 — y;)).
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Lemma 92 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay

k 1/k

i=1 i=1
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Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)
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Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 94
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)

for A € [0,1].
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Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 94
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)
= (1-2)f(0) +Af(1)

for A € [0,1].
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Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 94
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S(A) =f((1-A)0+ A1)
> (1-A)f(0)+Af(1)
=a+Ab

for A € [0,1].
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Pr[C; not satisfied]
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Pr[C; not satisfied] = [ [ (1 — ) [] »i

i€P; ieN;

[T
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Pr[C; not satisfied]

IA

[Ta-> [T i

i

T
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Pr[C; not satisfied]

[Ta-> [T i
i€P; ieN;

4
é(Z(l—ylH > yl)]

iEP; iEN;

_ #J.
= (Eyﬁ Z(l—yl)]
| i€P; ieEN;

IA
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Pr[C; not satisfied]

IA

[Ta-> [T i
i€P; ieN;

iEP; iEN;

(Z it Z(l—yl

i€P; ieEN;

4
é(Z(l—ylH > yl)]

)

T
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The function f(z) =1 — (1 — %)e is concave. Hence,

Pr[C; satisfied]
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The function f(z) =1 — (1 — %)e is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — ( — ZJ)
Y
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The function f(z) =1 - (1

2\ i
Pr[C; satisfied] > 1 — ( _ J)

— Z)Uis concave. Hence,

4;

[1-0-8)")
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The function f(z) =1 — (1 — %)e is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — ( — ZJ)
Y

[i-(-2)° =

’ {-1 z r=2 .
f(z) = —7[1 - ?] =<0 for z € [0,1]. Therefore, f is
concave.
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E[W] = > w;Pr[C; is satisfied]

J

> D w;z; [1 - (1 -

J

1

4

)|

T
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E[W] = > w;Pr[C; is satisfied]

J
> > w;z; [1— (1—
j
> (1—1>0PT.
e

1

4

)|

T
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MAXSAT: The better of two

Theorem 95

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.
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Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wi,W2}]
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Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]
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Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

3zwa - () g ())
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Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

o3 )

gwjzj ; (1—(1_31])%-)+;(1_(;)ej>l

3 .
> for all integers

%

\%
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Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

o3 )

>
0.
1 1\7) 1 1\ %
J
> %for aIIY integers

3
> —0OPT
> 40
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£

wl /

—— randomized rounding
0.5 —— flipping coins
- average
! !
1 2 3 4 5 6

¢
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MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.
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MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0, 1] and set x; to true
with probability f(y;).
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MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!
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MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

Theorem 96
Rounding the LP-solution with a function f of the above form
gives a %-approximation.
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Pr[C; not satisfied]
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Pr[C; not satisfied] = ]_[ (1 - f(v) 1_[ S (i)

lEPj IENJ'

T
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Pr[C; not satisfied] = ]_[ (1 - f(v) 1_[ S (i)

iEPj iENJ'
< n 47Yi 1_[ 4vi—1
iEPj iENj
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Pr[C; not satisfied] = ]_[ (1 - f(v) 1_[ S (i)

iEPj iENJ'
< n 47Yi 1_[ 4vi—1
iEPj iENj

_ 4*(Zier yi*ZieNj(lfyi))
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Pr[C; not satisfied] = ]_[ (1 - f(v) 1_[ S (i)

iEPj iENJ'
< n 47Yi 1_[ 4vi—1
iEPj iENj

_ 4*(Zier yi*ZieNj(lfyi))

<477
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] = 1 — 472
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The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .
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The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W]
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The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

Therefore,

E[W] = > w;Pr[C; satisfied]
J
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ
J
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ > zOPT
J
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The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.
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Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).



Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.



Lemma 98
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
G 2j Wiz
st Vj Yiep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
Vj zj < 1
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Lemma 98
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
G 2j Wiz
st Vj Yiep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
v j zj < 1

Consider: (x1 VvV x2) A (X1 VX2) A (X1 V X2) A(X1V X2)

> any solution can satisfy at most 3 clauses

> we can set | = y» = 1/2 in the LP; this allows to set
Z1=22=23=24=1

» hence, the LP has value 4.
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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Si1 wix;
s.t. YuelU Zi;ueSi Xi =
Vie{l,..., k} xXi =
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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix;
s.t. VuelU iyes;Xi = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Duecu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu =2 0
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Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
> ldentify an element e that is not covered in current primal
integral solution.
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable v, until a dual constraint becomes

tight (maybe increase by 0!).
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Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable v, until a dual constraint becomes

tight (maybe increase by 0!).
> If this is the constraint for set S; set xj = 1 (add this set to

your solution).
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Repetition: Primal Dual for Set Cover

Analysis:
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve = wj

eeSj
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

2.
J
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

Jwi=2, 2, Ve

j eeSK,-
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

ZwJ—Z Zye—zm e €S}y

Jj e€s;
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Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

Qwj=2 ZJ’e—ZH] eeSi}-ve<f- Zye<f OPT

J J ees;
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= z Ye = Wj

(—ZESJ'
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eeSj

If we would also fulfill dual slackness conditions

YVe>0= > xj=1

Jie€Ss;

then the solution would be optimal!!l
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We don’t fulfill these constraint but we fulfill an approximate
version:
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We don’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > x;=f

Jie€S;

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke



We don'’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > x;=f

Jie€S;
This is sufficient to show that the solution is an
f-approximation.
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Suppose we have a primal/dual pair

min 2.j CjX;j max
s.t. Vi Zj: aijxj = b s.t. Vj
Vj xj = 0 Vi

2ibiyi
2iaijYi
i

IA

%
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Suppose we have a primal/dual pair

min 2.j CjX;j max >ibivyi
s.t. Vi Zj: aijxj = b s.t. Vi aijyi < ¢Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1
Xj > 0= Zaijyi = &Cj
i
yi>0: Zainj SBbi
J
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Then

Z CjXj
J

[T
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Then

Z CjXj
J

T

EADS Il
©Harald Racke

20 Primal Dual Revisited



Then

right hand side of j-th
dual constraint

I
YL
J

T
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Then

Z CiXj|=

2| 2 i | Xi

J
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Then

Deixjl=ad | Y aijyi | x;
j i\

o3 (Sas,)

i J
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Then

Z CjXj
J

<o) | D aijyi|x;
Jj i

o3 (Sas,)

i \j
<aB- > biyi
i
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Then

Deixjl=ad | Y aijyi | x;
j i\

o3 (Sas,)

i J

B> biyi
i

dual objective

IA
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.
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Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.
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We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some
cycles.
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We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.
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We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.
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Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)
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Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

min Dy Wy Xy
s.t. VC E C ZUGC X‘U = 1
Yv xy = 0
Dual Formulation:
max Y.cecYc
s.t. VveV ZC:vECyC = Wy
vC yc = 0
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If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0
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If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
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If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.
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If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase y¢ until dual constraint for some vertex v
becomes tight.
» set x, = 1.
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v
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Then

Zwvxv =Z Z YcXv
v

vV CwveC

[T
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Then

Zwvxv ZZ Z YcXv
v

vV CwveC

>, 2. e

veSCveC

where S is the set of vertices we choose.
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Then

Zwvxv ZZ Z YcXv
v

vV CwveC
=2 2 v
veSCveC
=>18nCl-yc
&

where S is the set of vertices we choose.
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Then

Zwvxv :Z Z YcXv
v

vV CwveC

=2 2
veSCveC

=2 1SnCl- e
&

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but
this is unrealistic.
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Algorithm 1 FeedbackVertexSet

1. vy <0

2:x <0

3: while exists cycle C in G do

4: increase yc until there is v € C s.t. Y c.pec Ve = Wy
5 Xy =1

6 remove v from G

7 repeatedly remove vertices of degree 1 from G
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.
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Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.
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Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 99

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=|SNnC| <0O(logn) .
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
st. v§SeSs Ze:g(s)xe > 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.
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Primal Dual for Shortest Path

The Dual:
max 2.5 Ys
st. Ve €E Dgoesis) Vs
vSesS s

vV IA

c(e)
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Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vsSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.
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Primal Dual for Shortest Path
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke



Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.
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Algorithm 1 PrimalDualShortestPath

1. v <0

2. F <0

3: while there is no s-t path in (V,F) do

4 Let C be the connected component of (V,F) con-
taining s

Increase yc¢ until there is an edge ¢’ € 6(C) such
that Xg.re5(s) Vs = c(e).

F <~ Fu{e'}

: Let P be an s-t path in (V,F)

8: return P

(9]

N @
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Lemma 100
At each point in time the set F forms a tree.
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Lemma 100
At each point in time the set F forms a tree.

Proof:

> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
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Lemma 100
At each point in time the set F forms a tree.

Proof:
> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.
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> cle)

ecP

> 2. s

ecP S:eed(S)

T
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> 2. s

ecP S:eed(S)

S PASS) s

S:seS,t¢S

T
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D=2 > s

ecP ecP S:eed(S)

= > IPns©S)|-ys
S:seStgS

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.
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D=2 > s

ecP ecP S:eed(S)

= > IPns©S)|-ys
S:seStgS

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke



[T

EADS Il
©Harald Racke

20 Primal Dual Revisited



If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.
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If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.
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Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si,ti,i=1,...,k, and a cost function ¢ : E — R* on the edges.
Find a subset F < E of the edges such that for every

i€ {1,...,k} there is a path between s; and t; only using edges
in F.
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Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si, ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ecle)xe
s.t. VScV:SeS;forsomei DocssyXe = 1
Ve e E x. € {0,1}
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Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si, ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ecle)xe
s.t. VScV:SeS;forsomei DocssyXe = 1
Ve e E x. € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.
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max 2S:3ist.Ses; Vs
s.t. VeeE 25;865(5) ys =< cl(e)
s =2 0

A

The difference to the dual of the shortest path problem is that
we have many more variables (sets for which we can generate a
moat of non-zero width).
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Algorithm 1 FirstTry

1. v <0

2:F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;,t;}| = 1 for some 1.

5: Increase yc¢ until there is an edge e’ € 6(C) s.t.
2.sesieres(s) VS = Ce’

6: F—Fu{e'}

7: return |UJ; P;
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Secle)=> > s

ecF ecF S:eed(S)

[T
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dDcle)=> > ys=>18(S)NFl-ys .

ecF ecF S:eed(S) S

[T
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dDcle)=> > ys=>18(S)NFl-ys .

ecF ecF S:eed(S) S

[T
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dee)=> > ys—Zlé (S)NFl-ys .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.
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dee)=> > ys—ZI(S (S)NFl-ys .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

» The i-th pair is vy-v;.
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docler=2 > y5—2|55)ﬂF| Vs .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.
» The i-th pair is vy-v;.

» The first component C could be {vg}.
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docler=2 > y5—2|55)ﬂF| Vs .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

v

The i-th pair is vo-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.
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doeler=2 > ys—2|5(s>mp| s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

v

The i-th pair is vo-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
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doeler=2 > ys—2|5(s>mp| s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

» The i-th pair is vy-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
Yivet > 0 but [6({vo}) NF| =

v
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Algorithm 1 SecondTry

1:y<0;F<0;¢ -0

2: while not all s;-t; pairs connected in F do

3: {—4+1
4: Let C be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some i.

Increase y¢ for all C € C uniformly until for some edge
ep €6(C), C" € Cs.t. Xge)e5(5) Vs = Cey
6: F — Fu {ep}

7. FF < F

8: for k — £ downto 1 do // reverse deletion
9 if F/ — ey is feasible solution then
0: remove ey from F’

1: return F’

vl

1
1
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The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.
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Example
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Example

(]
S1 52 tr

(5]

053

t3
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Example
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S2 to
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t3
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Example
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Lemma 101
For any C in any iteration of the algorithm

> 18(C)nF'| <2[C]
ceC

This means that the number of times a moat from C is crossed
in the final solution is at most twice the number of moats.

Proof: later...
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ecF’
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2. =2 2 s

ecF’ ecF’ S:eed(S)
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Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) N

[T
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dDece=> > yS—ZIF Nos)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S
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Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFns0)
ceC

and the increase of the right hand side is 2¢|C].
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dDece=> > ys—Z|Fma<s>| Vs .

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > [Fnés(O)
ceC
and the increase of the right hand side is 2¢|C].

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.
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Lemma 102
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC
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Lemma 102
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).
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Lemma 102
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
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Lemma 102

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).
» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H = F —F;.
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Lemma 102

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H = F —F;.

» All edges in H are necessary for the solution.
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» Contract all edges in F; into single vertices V'.

T
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» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.
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» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

T
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» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T
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» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T

> We have
?
> deg(v) = > [5(C) nF'| =2|C| =2R|
vER cecC
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» Suppose that no node in B has degree one.
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» Suppose that no node in B has degree one.
» Then
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» Suppose that no node in B has degree one.

» Then

>, deg(v)

VER

T
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» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

T

EADS I 20 Primal Dual Revisited
©Harald Racke



» Suppose that no node in B has degree one.

» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

< 2(|R| + |B|) — 2|B|

T
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» Suppose that no node in B has degree one.

» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

T
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» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.
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» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.
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» Suppose that no node in B has degree one.
» Then
> deg(v) = > deg(v) — > deg(v)

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

T
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» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

» But then it must be a red node.

T
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21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vVSeSs 2665(5) Xe = 1
Ve e E x. € {0,1}

S is the set of subsets that separate s from t.
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21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vSeS 2665(5) Xe = 1
Ve e E X = 0
S is the set of subsets that separate s from t.
The Dual:
max 2.5 Vs
st. Ve€E Dgeesis)Vs =< cle)
vses ys = 0
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21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vSeS 2665(5) Xe = 1
Ve € E Xe = 0
S is the set of subsets that separate s from t.
The Dual:
max 2.5 Vs
st. Ve€E Dgeesis)Vs =< cle)
vses ys = 0

The Separation Problem for the Shortest Path LP is the Minimum
Cut Problem.
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21 Cuts & Metrics

Minimum Cut

min Decle)xe
st. VPP  D.cpXe
Ve e E Xe

>

€

1
10,1}

P is the set of path that connect s and t.
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21 Cuts & Metrics
Minimum Cut

min Decle)xe
st. VPe?P DeepXe = 1
Ve € E Xe =
P is the set of path that connect s and t.
The Dual:
max 2p P
st. Ve€E Dp.ecpyp < cle)
VP e P yp = 0
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21 Cuts & Metrics
Minimum Cut

min Decle)xe
st. VPe?P DeepXe = 1
Ve € E Xe =
P is the set of path that connect s and t.
The Dual:
max 2p P
st. Ve€E Dp.ecpyp < cle)
VP e P yp = 0

The Separation Problem for the Minimum Cut LP is the Shortest
Path Problem.
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21 Cuts & Metrics

Minimum Cut

min Secle)le
st. VPeP S,eple = 1
Ve e E l, =
P is the set of path that connect s and t.
The Dual:

max 2pfp

st. Vee€E Dpe.epfr =< cle)

VP e?P fr = 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke



21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.

» We can view ¥, as defining the length of an edge.
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21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.

> Define d(u,v) = MiNpath P btw. u and v Decp le as the
Shortest Path Metric induced by ,.
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21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.

> Define d(u,v) = MiNpath P btw. u and v Decp le as the
Shortest Path Metric induced by ,.

» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we

could reduce ¥, without affecting the distance between s
and t.
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21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.
» Define d(u,v) = miNpath P btw. u and v D.ecp Le as the
Shortest Path Metric induced by ,.
» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we
could reduce £, without affecting the distance between s
and t.

Remark for bean-counters:
d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.
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How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.
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How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of » should we choose?
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How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of ¥ should we choose? choose randomly!!!
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How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of ¥ should we choose? choose randomly!!!

Formally:
choose v u.a.r. (uniformly at random) from interval [0, 1)
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What is the probability that an edge (u, v) is in the cut?

) A
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What is the probability that an edge (u, v) is in the cut?

5 A
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What is the probability that an edge (u, v) is in the cut?

v
(] O
N u

~
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What is the probability that an edge (u, v) is in the cut?

(] O
N u

~
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What is the probability that an edge (u, v) is in the cut?

&
N
~0
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What is the probability that an edge (u, v) is in the cut?

&
N
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What is the probability that an edge (u, v) is in the cut?

&
N
~0
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What is the probability that an edge (u, v) is in the cut?

N
<
-
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What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

Pr[e is cut]
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What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

Pr[e is cut] = Pr[r € [d(s,u),d(s,v))]
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What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

as,v) —d(s,u)

Prle is cut] = Pr[r € [d(s,u),d(s,v))] < )
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What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

as,v) —d(s,u)

Prle is cut] = Pr[r € [d(s,u),d(s,v))] <
<L,

1-0
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What is the expected size of a cut?

E[size of cut] = E[ Ze c(e)Pr[e is cut]]
< Zec(e)ﬁe
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What is the expected size of a cut?

E[size of cut] = E| Ze c(e)Pr[e is cut]]
< Zec(e)ﬂe

On the other hand:

Zec(e)ﬂe < size of mincut

as the ¥, are the solution to the Mincut LP relaxation.
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What is the expected size of a cut?

E[size of cut] = E| Ze c(e)Pr[e is cut]]
< Zec(e)ﬂe

On the other hand:

Zec(e)ﬂe < size of mincut

as the ¥, are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.
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Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).
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Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

min Secle)le
s.t. VPeP;forsomei D,ple = 1
Ve € E t. € {0,1}
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Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

min Secle)le
s.t. VPeP;forsomei D,ple = 1
Ve € E t. € {0,1}

Here P; contains all path P between s; and t;.
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Re-using the analysis for the single-commodity case is
difficult.
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Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?
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Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

> If for some R the balls B(s;, R) are disjoint between different
sources, we get a 1/R approximation.

» However, this cannot be guaranteed.
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» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

T
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» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.
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» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

> Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z0.
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» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

» Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z90.

Algorithm 1 RegionGrowing(s;i, p)
1:. z<0

2: repeat

3 flip a coin (Pr[heads] = p)
4. z—z+1
5
6

- until heads
: return B(s;, z)
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Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)
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Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p
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Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut
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Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2: C — RegionGrowing(si, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources
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Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(si, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

» if we choose p = § the probability of cutting an edge is only
its LP-value; our expected cost are at most OPT.
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Problem:
We may not cut all source-target pairs.
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Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.
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Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

If we ensure that we cut before reaching radius 1/2 we are in
good shape.
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» choose p =6Ink -6

[T
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» choose p =6Ink -6
» we make % trials before reaching radius 1/2.
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» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

» we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

S
IA
o
Sk

Pr[not successful] < (l—p)% = ((1—;9)1/”)

IA

T
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» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

» we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

S

2 —

Prnot successful] < (1—p)? = ((1—;9)1/”) ce b <L

k3

» Hence,

. . 1
Pr[3i that is not successful] < X2
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize | succ.]
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize]
~ Pr[success]
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] =

Pr[success]
E[cutsize] 1 61nk - OPT
~ Pr[success] T~ 1 — %
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize] ! 6Ink.OPT < 8Ink - OPT

~ Pr[success] T~ 1 — %
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What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

_ E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize] ! 6Ink.OPT < 8Ink - OPT

~ Pr[success] T~ 1 — %

Note: success means all source-target pairs separated

We assume k > 2.
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If we are not successful we simply perform a trivial
k-approximation.

This only increases the expected cost by at most
& - kOPT < OPT/k.

Hence, our final cost is O(Ink) - OPT in expectation.
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Facility Location

Given a set L of (possible) locations for placing facilities and a

set D of customers together with cost functions s: D x L — R*
and o: L — R* find a set of facility locations F together with an
assignment ¢ : D — F of customers to open facilities such that

D> o(f) + D s(c,plc))

feF
is minimized.
In the metric facility location problem we have

s(e, f) <s(e, f1) +s(c', f)+sc, f) .
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Facility Location

Integer Program

min 2ier JiYi + 2ier 2.jep CijXij
s.t. VjeD DicrXij = 1
VieF,jeD Xij = Vi
VieF,jeD xij € {0,1}
VieF yvi € {0,1}

As usual we get an LP by relaxing the integrality constraints.
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Facility Location

Dual Linear Program

max
s.t.

Zjeva

VieF ZjeDwij
VieF,jeED v;—wj
VieF,jeD Wij

IV IA A

fi

Cij

©Harald Racke
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Facility Location

Definition 103
Given an LP solution (x*, ¥*) we say that facility i neighbours
client j if x;; > 0. Let N(j) = {iEF:x;“j > 0}.
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Lemma 104

If (x*,v*) is an optimal solution to the facility location LP and
(v*,w*) is an optimal dual solution, then xi*j > 0 implies

Cij = v;-".

Follows from slackness conditions.
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Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

m EADS Il 22 Facility Location =) =
©Harald Racke



Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v ;.
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Suppose we open set S < F of facilities s.t. for all clients we have
SNN(j) + 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v ;.

Hence, the total assignment cost is

D.Ci;j < 2 vf =OPT,
J J

where i; is the facility that client j is assigned to.
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Problem: Facility cost may be huge!
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Problem: Facility cost may be huge!

Suppose we can partition a subset F’ < F of facilities into
neighbour sets of some clients. l.e.

F' =|HNGi)
k

where j1, j2,... form a subset of the clients.
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik :fik Z x;kjk

i€N (jk)
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk

i€N (jk) €N (jk)
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zfik
k
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk = Z fiyi*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk = Z Z fl)’l

k ieN(jk)

m EADS II 22 Facility Location =
©Harald Racke



Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk = Z fiyi*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk—z Z flyl Zfiyi*

k ieN(jx) ieF’
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk—z Z flyl Zfiy{kﬁz.fiyi*

k ieN(jx) ieF’ ieF
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Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik:fik Z x;kjks Z fixl?kjkS Z flyl*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk <> > fivi= D fivi=> five

k ieN(jx) ieF’ ieF

Facility cost is at most the facility cost in an optimum solution.
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Problem: so far clients ji, j2, ... have a neighboring facility.

What about the others?

©Harald Racke
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Problem: so far clients ji, j2, ... have a neighboring facility.
What about the others?

Definition 105
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.
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Problem: so far clients ji, j2, ... have a neighboring facility.

What about the others?

Definition 105
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

Note that N (j) is a set of facilities while N2(j) is a set of clients.
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Algorithm 1 FacilityLocation
1: C < D// unassigned clients
2: k<0
3: while C = 0 do
4 k—k+1
5 choose ji € C that minimizes v;f
6: choose iy € N(ji) as cheapest facility
7
8

assign jx and all unassigned clients in N2(jx) to i
C — C - {jx} — N2(jx)
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:

» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj + Cpy
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp <V +V] + V)
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp S V] +V] + V) <3V)
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Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp S V] +V] + V) <3V)

Summing this over all facilities gives that the total assignment
cost is at most 3 - OPT. Hence, we get a 4-approximation.
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In the above analysis we use the inequality

> fiyF <OPT .

ieF

m EADS I 22 Facility Location
©Harald Racke



In the above analysis we use the inequality

> fiyF <OPT .

ieF

We know something stronger namely

Zfiyi* + Z z Ciszkj < OPT .

ieF ieF jeD
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Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to x;“jk.
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Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random
facility according to xj‘jk.

» Then we incur connection cost

gk
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
Vi)
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Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to xf‘jk.

» Then we incur connection cost
PR
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
*
vjk).
» Define
X LAk
¢ = chjxij
i

to be the connection cost for client j.
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What will our facility cost be?
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What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).
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What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

We open facility i with probability x;j, < y; (in case itis in some
neighborhood; otw. we open it with probability zero).
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What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

We open facility i with probability x;j, < y; (in case itis in some
neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

> fivi .

ieF
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Algorithm 1 FacilityLocation

1: C < D// unassigned clients

2: k<0

3: while C = 0 do

4 k—k+1

5 choose ji € C that minimizes v;‘ + C;f

6: choose iy € N(jk) according to probability x;j, .

7 assign jx and all unassigned clients in N2(j) to ix
8 C — C - {jk} = N2(jix)

T
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Total assignment cost:

» Fix k; set j = ji.



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).



Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Z CUxijk tChj + Cpy
i



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Docijx +cnj+ e <Cr+vi+v)
i



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Summing this over all clients gives that the total assignment cost
is at most
* * *
ZCJ. + ZZvj < ZCJ. +20PT
J J J



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Summing this over all clients gives that the total assignment cost
is at most

Z Ci + Z 2vf < Z Cj +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.



Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Docijxl +enjt+ e <Cr+vi+vl <Cp+2vf
i
Summing this over all clients gives that the total assignment cost

is at most
Z Ci + Z 2vf < Z Cj +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

Adding the facility cost gives a 3-approximation.
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