SS 2015

Efficient Algorithms
and Data Structures Il

Harald Racke

Fakultat fir Informatik
TU Minchen

http://wwwl4.in.tum.de/lehre/2015SS/ea/

Summer Term 2015

T

EADS Il
©Harald Racke

Part |

Organizational Matters

T

EADS Il
©Harald Racke

Part |
Organizational Matters

» Modul: IN2004

T

EADS Il
©Harald Racke

Part |
Organizational Matters

» Modul: IN2004

» Name: “Efficient Algorithms and Data Structures II”
“Effiziente Algorithmen und Datenstrukturen II”

T

EADS Il =)
©Harald Racke

Part |
Organizational Matters

» Modul: IN2004

» Name: “Efficient Algorithms and Data Structures II”
“Effiziente Algorithmen und Datenstrukturen II”

» ECTS: 8 Credit points

T

EADS Il =)
©Harald Racke

Part |
Organizational Matters

Modul: IN2004

Name: “Efficient Algorithms and Data Structures II”
“Effiziente Algorithmen und Datenstrukturen II”

ECTS: 8 Credit points
» Lectures:
» 4 SWS

Mon 12:15-13:45 (Room 00.13.009A)
Fri 12:15-13:45 (Room 00.13.009A)

v

v

v

T

EADS Il =)
©Harald Racke

Part |
Organizational Matters

Modul: IN2004

Name: “Efficient Algorithms and Data Structures II”
“Effiziente Algorithmen und Datenstrukturen II”

ECTS: 8 Credit points

» Lectures:

> 4 SWS
Mon 12:15-13:45 (Room 00.13.009A)
Fri 12:15-13:45 (Room 00.13.009A)

Webpage: http://wwwl4.in.tum.de/lehre/2015SS/ea/

v

v

v

v

T

EADS Il =) =
©Harald Racke

The Lecturer

\ 4

Harald Racke
Email: raecke@in.tum.de
Room: 03.09.044

Office hours: (per appointment)

v

v

v

©Harald Racke

Tutorials

» Tutor:

» Chintan Shah

» chintan.shah@tum.de
» Room: 03.09.059

> per appointment

» Room: 03.11.018
» Time: Tue 16:15-17:45

T

EADS Il
©Harald Racke

Assessment

> In order to pass the module you need to pass an exam.

m EADS Il =
©Harald Racke

Assessment

> In order to pass the module you need to pass an exam.

» Exam:

m EADS Il =
©Harald Racke

Assessment

> In order to pass the module you need to pass an exam.

» Exam:
> 3 hours

m EADS Il =
©Harald Racke

Assessment

> In order to pass the module you need to pass an exam.

» Exam:

> 3 hours
> Date will be announced shortly.

‘m EADS Il =
©Harald Racke

Assessment

> In order to pass the module you need to pass an exam.

» Exam:

> 3 hours

> Date will be announced shortly.

» There are no resources allowed, apart from a hand-written
piece of paper (A4).

‘m EADS Il = =
©Harald Racke

Asse

ssment

> In order to pass the module you need to pass an exam.

» Exam:

> 3 hours

> Date will be announced shortly.

» There are no resources allowed, apart from a hand-written
piece of paper (A4).

» Answers should be given in English, but German is also
accepted.

T

EADS Il
©Harald Racke

Assessment

» Assignment Sheets:

©Harald Racke

Assessment

» Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

‘m EADS Il = =
©Harald Racke

Assessment

» Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

» Solutions have to be handed in in the following week before
the lecture on Monday.

‘m EADS Il = =
©Harald Racke

Assessment

» Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

» Solutions have to be handed in in the following week before
the lecture on Monday.

» You can hand in your solutions by putting them in the right
folder in front of room 03.09.020.

‘m EADS Il = =
©Harald Racke

Assessment

» Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

» Solutions have to be handed in in the following week before
the lecture on Monday.

» You can hand in your solutions by putting them in the right
folder in front of room 03.09.020.

» Solutions have to be given in English.

T

EADS Il =) =
©Harald Racke

Assessment

» Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

» Solutions have to be handed in in the following week before
the lecture on Monday.

» You can hand in your solutions by putting them in the right
folder in front of room 03.09.020.

» Solutions have to be given in English.

» Solutions will be discussed in the subsequent tutorial on
Tuesday.

T

EADS Il =) =
©Harald Racke

Assessment

» Assignment Sheets:

>

An assignment sheet is usually made available on Monday
on the module webpage.

Solutions have to be handed in in the following week before
the lecture on Monday.

You can hand in your solutions by putting them in the right
folder in front of room 03.09.020.

Solutions have to be given in English.

Solutions will be discussed in the subsequent tutorial on
Tuesday.

The first one will be out on Monday, 20 April.

T

EADS Il

©Harald Racke

1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms

‘m EADS Il 1 Contents
©Harald Racke

2 Literatur

[4 V. Chvatal:

Linear Programming,
Freeman, 1983

@ R. Seidel:

Skript Optimierung, 1996

[4 D. Bertsimas and J.N. Tsitsiklis:

Introduction to Linear Optimization,
Athena Scientific, 1997

@ Vijay V. Vazirani:

Approximation Algorithmes,
Springer 2001

T

EADS Il 2 Literatur
©Harald Racke

ﬁ David P. Williamson and David B. Shmoys:
The Design of Approximation Algorithmes,
Cambridge University Press 2011

@ G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A.
Marchetti-Spaccamela, and M. Protasi:
Complexity and Approximation,

Springer, 1999

‘m EADS Il 2 Literatur
©Harald Racke

Part Il

Linear Programming

T

EADS Il
©Harald Racke

Brewery Problem

Brewery brews ale and beer.

» Production limited by supply of corn, hops and barley malt

‘m EADS Il 3 Introduction =) =
©Harald Racke

Brewery Problem

Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

» Recipes for ale and beer require different amounts of
resources

‘m EADS Il 3 Introduction =] =
©Harald Racke

Brewery Problem

Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

» Recipes for ale and beer require different amounts of

resources
Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

‘m EADS Il 3 Introduction =] =
©Harald Racke

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?

©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?

> only brew ale: 34 barrels of ale

T

EADS Il
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) €
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€

T

EADS 1l
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) €
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
> only brew ale: 34 barrels of ale = 442€

> only brew beer: 32 barrels of beer

T

EADS 1l
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit

(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€

T

EADS 1l
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit

(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€

» 7.5 barrels ale, 29.5 barrels beer

T

EADS Il
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776€

T

EADS Il
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776€

» 12 barrels ale, 28 barrels beer

T

EADS Il
©Harald Racke

3 Introduction

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442 €
> only brew beer: 32 barrels of beer = 736€
» 7.5 barrels ale, 29.5 barrels beer = 776€
> 12 barrels ale, 28 barrels beer = 800€

T

EADS Il
©Harald Racke

3 Introduction

Brewery Problem

Linear Program

©Harald Racke

3 Introduction

Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.

m EADS Il 3 Introduction =]
©Harald Racke

Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.

‘m EADS Il 3 Introduction =)
©Harald Racke

Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.
» Make sure that no constraints (due to limited supply) are
violated.

‘m EADS Il 3 Introduction =]
©Harald Racke

Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.

» Choose the variables in such a way that the objective
function (profit) is maximized.

» Make sure that no constraints (due to limited supply) are

violated.
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

LP in standard form:

©Harald Racke

3 Introduction

Standard Form LPs

LP in standard form:

> input: numbers a;j, ¢j, b;

m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

LP in standard form:
> input: numbers a;j, ¢j, b;

> output: numbers X

m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

LP in standard form:
> input: numbers a;j, ¢j, b;
> output: numbers X

» n = #decision variables, m = #constraints

‘m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

LP in standard form:
> input: numbers a;j, ¢j, b;
> output: numbers X
» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear
(in)equalities

‘m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

LP in standard form:
> input: numbers a;j, ¢j, b;
> output: numbers X
» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear
(in)equalities

n
max Z Cij
J=1

n
s.t. Zaijxj = b l<i<m
Jj=1

%
S
—_
IA
.
A
S

2

‘m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

LP in standard form:

> input: numbers a;j, ¢j, b;

> output: numbers X

» n = #decision variables, m = #constraints

» maximize linear objective function subject to linear

(in)equalities

n
max Z Cij
J=1

©Harald Racke

max c!x
n
. s.t. Ax =
X = <i<
st > aijx; bi 1<i<m x =
Jj=1
xj =2 0 1<j=<n
3 Introduction =) =

Standard Form LPs

Original LP

max
s.t.

13a
S5a
4a
35a

23b

15b <480
4b <160
20b <1190
a,b =0

+ o+ + o+

T

EADS Il
©Harald Racke

3 Introduction =) =

Standard Form LPs

Original LP
max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Standard Form
Add a slack variable to every constraint.

max 13a + 23b

st. 5a + 15b + s =480
4da + 4b + Sp =160
35a + 20b + s;m =1190
a |, b , sc , sn , Sm =0

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = Db
x = 0

m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = Db
x = 0

min
s.t.

\%

‘m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0

standard
maximization form

max clx
st. Ax < b
x = 0

min cTx
s.t. Ax
X

\%

‘m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0

standard
maximization form

max clx
st. Ax < b
x = 0

min cTx
st. Ax = b
x = 0

standard
minimization form

min c’x
st. Ax = b
x = 0

‘m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

‘m EADS Il 3 Introduction =)
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512:>a 3 CEs
s=>0

‘m EADS Il 3 Introduction =)
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

4-3b+scs1p — d73b+5c—s=12
s>0

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

—3b+5c—5=12
a-3b+5c>12 = ¢ Focms
s>0

> min to max:

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» less or equal to equality:

—-3b + + 12
a—3b+5c512=>a 3 CEs
s=>0

» greater or equal to equality:

—3b+5c—5=12
a-3b+5c>12 = ¢ Focms
s>0

> min to max:

mina — 3b +5¢ = max—-a + 3b - 5¢

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

‘m EADS Il 3 Introduction =)
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

12
-12

a—3b +5c
a-3b+5c=12 = —a+3b—5c

AN IA

‘m EADS Il 3 Introduction =)
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

12
-12

a—3b+5c <
a-3b+5c=12 = Ca+3b-5c <

» equality to greater or equal:

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3bisc=12 — 4 3brsesl
a ~a+3b-5c<-12
» equality to greater or equal:
a-3b+5c =12
a-3b+5¢c=12 = Ca43b—5c> 17

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3bisc=12 — 4 3brsesl
a ~a+3b-5c<-12
» equality to greater or equal:
a-3b+5c =12
a-3b+5¢c=12 = Ca43b—5c> 17

> unrestricted to nonnegative:

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

» equality to less or equal:

a-3bisc=12 — 4 3brsesl
a ~a+3b-5c<-12
» equality to greater or equal:
a-3b+5c =12
a-3b+5¢c=12 = Ca43b—5c> 17

> unrestricted to nonnegative:

x unrestricted = x=x"-x",x7=0,x" =0

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

Observations:

» a linear program does not contain x?2, cos(x), etc.

m EADS Il 3 Introduction
©Harald Racke

Standard Form LPs

Observations:
» a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

‘m EADS Il 3 Introduction =]
©Harald Racke

Standard Form LPs

Observations:
» a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

» for the standard minimization or maximization LPs we could
include the nonnegativity constraints into the set of
ordinary constraints; this is of course not possible for the
standard form

‘m EADS Il 3 Introduction =] =
©Harald Racke

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions
Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist

xeQ"st. Ax=b,x=20,c'x=a?

Questions:

m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> |s LP in NP?

m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> |s LP in NP?
» Is LP in co-NP?

m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

Input size:

‘m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ce Q" xe Q. Does there exist
xeQ"st. Ax=b,x=20,c'x=a?

Questions:
> Is LP in NP?
> Is LP in co-NP?
> Is LPin P?

Input size:
» n number of variables, m constraints, L number of bits to
encode the input

‘m EADS Il 3 Introduction =]
©Harald Racke

Geometry of Linear Programming

beer b

alea

Geometry of Linear Programming

beer b

alea

Geometry of Linear Programming

beer b

alea

Geometry of Linear Programming

beer b

5a +15b <480

alea

Geometry of Linear Programming

beer b

35a +20b < 1190

5a+ 15b < 480

/

ale a

Geometry of Linear Programming

beer b

35a +20b < 1190

4a +4b < 160

5a+ 15b < 480

y

IS}
v
o

ale a

Geometry of Linear Programming

beer b

35a +20b < 1190

4a +4b < 160
5a+ 15b < 480 \\

7

ale a

Geometry of Linear Programming

beer b

alea

Geometry of Linear Programming

beer b

~
~
~

¥~ 13a + 23b = 1400

alea

Geometry of Linear Programming

beer b

~
~
~

¥~ 13a + 23b = 1400

13a + 23b = 442 alea

Geometry of Linear Programming

beer b

~
~
~

¥~ 13a + 23b = 1400

~
~
~

“~ 13a + 23b = 800

13a + 23b = 442

alea

Geometry of Linear Programming

beer b

~
/\ .
~ ~
~
\QI\ ~

N
RS
~‘
S S
~~~ ~~~
~ .~
Sl S
~ N
~
~~~~\ ~~~
MA ~ 13a + 23b = 800

a=0
I 13a + 23b = 442 alea

¥~ 13a + 23b = 1400

Geometry of Linear Programming

beer b

Regardless of the objective function an
optimum solution occurs at a vertex
(Ecke).

\

alea

Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

m EADS Il 3 Introduction
©Harald Racke

Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.

m EADS Il 3 Introduction =]
©Harald Racke

Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

P is called the feasible region (Losungsraum) of the LP.

v

» A point x € P is called a feasible point (glltige Losung).

m EADS Il 3 Introduction =]
©Harald Racke

Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

» P is called the feasible region (Losungsraum) of the LP.

» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfuillbar).

m EADS Il 3 Introduction =]
©Harald Racke

Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

If P = @ then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).

v

‘m EADS Il 3 Introduction =) =
©Harald Racke

Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).

» An LP is bounded (beschrankt) if it is feasible and

‘m EADS Il 3 Introduction =) =
©Harald Racke

Definitions

Let for a Linear Program in standard form

P

={x | Ax = b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).
» An LPis bounded (beschrankt) if it is feasible and
» ¢Tx < o for all x € P (for maximization problems)

T

EADS Il 3 Introduction & =
©Harald Racke

Definitions

Let for a Linear Program in standard form

P

={x | Ax = b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige Losung).

» If P + () then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).
» An LP is bounded (beschrankt) if it is feasible and

» ¢Tx < o for all x € P (for maximization problems)
» ¢Tx > —oo for all x € P (for minimization problems)

T

EADS Il 3 Introduction & =
©Harald Racke

Definition 2
Given points x,y € R™, a point z € R™ is a convex combination

of x and v if
z=Ax+(1-A)y

for some A € [0, 1].

m EADS Il 3 Introduction =] =
©Harald Racke

Definition 2
Given points x,y € R™, a point z € R™ is a convex combination
of x and v if

z=Ax+(1-A)y

for some A € [0,1].
Definition 3

A set X € R"™ is convex if the convex combination of any two
poins in X is also in X.

‘m EADS Il 3 Introduction =) =
©Harald Racke

Definition 4
A function f: R™ — R is convex if for x,y € R" and A € [0, 1]
we have

SAx+ 1 -2)y) <Af(x)+(1-A)f(y)

m EADS Il 3 Introduction =]
©Harald Racke

Definition 4
A function f: R™ — R is convex if for x,v € R" and A € [0, 1]
we have

SAx+ 1 -2)y) <Af(x)+(1-A)f(y)

Lemma 5
IfP < R™, and f : R™ — R convex than also

Q=1{xeP]| f(x) =<t}

m EADS Il 3 Introduction =]
©Harald Racke

Definition 6
The dimension of a set X < R™ is the dimension of the vector
space generated by vectors of the form (x — y) with x,y € X.

m EADS Il 3 Introduction =]
©Harald Racke

Definition 6
The dimension of a set X < R" is the dimension of the vector
space generated by vectors of the form (x — y) with x,y € X.

Definition 7
Aset H < R"™is a hyperplane if H = {x | alx = b}, fora # 0.

‘m EADS Il 3 Introduction =)
©Harald Racke

Definition 6
The dimension of a set X < R" is the dimension of the vector

space generated by vectors of the form (x — y) with x,y € X.

Definition 7
Aset H < R"™is a hyperplane if H = {x | alx = b}, fora # 0.

Definition 8
Aset H < R"is a (closed) halfspace if H = {x | a’x < b}, for
a + 0.

‘m EADS Il 3 Introduction =)
©Harald Racke

Definitions

Definition 9
A polytop is a set P = R" that is the convex hull of a finite set of
points, i.e., P = conv(X) where

Y
conv(X) = {zAlxllﬂeNxl,...,xgeX,Aizo,ZAizl}

i=1 i

and | X| = c.

m EADS Il 3 Introduction =] =
©Harald Racke

Definitions

Definition 10

A polyhedron is a set P = R" that can be represented as the
intersection of finitely many half-spaces
{H(ai,b1),...,H(am,bm)}, where

H(ai,b;) = {x e R" | a;x < b;} .

m EADS Il 3 Introduction =]
©Harald Racke

Definitions

Definition 10

A polyhedron is a set P = R" that can be represented as the
intersection of finitely many half-spaces
{H(ai,b1),...,H(am,bm)}, where

H(ai,bi) = {X e R" | aix < bi} .

Definition 11
A polyhedron P is bounded if there exists B s.t. ||x||» < B for all

x € P.

‘m EADS Il 3 Introduction =) =
©Harald Racke

Definitions

Theorem 12

P is a bounded polyhedron iff P is a polytop.

m EADS Il 3 Introduction
©Harald Racke

Definition 13
Let P < R™, a € R" and b € R. The hyperplane

H(a,b) = {x € R" | ax = b}

is a supporting hyperplane of P if max{ax | x € P} = b.

m EADS Il 3 Introduction
©Harald Racke

Definition 13
Let P < R™, a € R" and b € R. The hyperplane

H(a,b) = {x € R" | ax = b}

is a supporting hyperplane of P if max{ax | x € P} = b.

Definition 14
LetP < R"™ Fisafaceof Pif F=PorF =PnH for some
supporting hyperplane H.

m EADS Il 3 Introduction =]
©Harald Racke

Definition 13
Let P < R™, a € R" and b € R. The hyperplane

H(a,b) = {x € R" | ax = b}

is a supporting hyperplane of P if max{ax | x € P} = b.

Definition 14
LetP < R"™ Fisafaceof Pif F=PorF =PnH for some
supporting hyperplane H.

Definition 15
Let P € R™.

» aface vis avertex of P if {v} is a face of P.
> aface e is an edge of P if e is a face and dim(e) = 1.

» a face F is a facet of P if F is a face and
dim(F) = dim(P) — 1.

‘m EADS Il 3 Introduction =]
©Harald Racke

Equivalent definition for vertex:

Definition 16
Given polyhedron P. A point x € P is a vertex if 3¢ € R" such
that c’x < c’y, forall y € P.

Definition 17
Given polyhedron P. A point x € P is an extreme point if
Aa,b = x, a,b € P,with Aa+ (1 —A)b =x for A € [0,1].

‘m EADS Il 3 Introduction =)
©Harald Racke

Equivalent definition for vertex:

Definition 16
Given polyhedron P. A point x € P is a vertex if 3¢ € R" such
that c’x < c’y, forall y € P.

Definition 17
Given polyhedron P. A point x € P is an extreme point if
Aa,b = x, a,b € P,with Aa+ (1 —A)b =x for A € [0,1].

Lemma 18
A vertex is also an extreme point.

‘m EADS Il 3 Introduction =]
©Harald Racke

Observation
The feasible region of an LP is a Polyhedron.

m EADS Il 3 Introduction
©Harald Racke

Convex Sets

Theorem 19
If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

‘m EADS Il 3 Introduction =) =
©Harald Racke

Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point

‘m EADS Il 3 Introduction =] =
©Harald Racke

Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point

» there exists direction d = O suchthat x +d € P

‘m EADS Il 3 Introduction =] =
©Harald Racke

Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point
» there exists direction d = 0 suchthat x +d € P
» Ad = 0 because A(x +d) =Db

‘m EADS Il 3 Introduction =] =
©Harald Racke

Convex Sets

Theorem 19

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

» suppose x is optimal solution that is not extreme point
» there exists direction d = 0 suchthat x +d € P
» Ad = 0 because A(x +d) =Db

» Wlog. assume c’d > 0 (by taking either d or —d)

‘m EADS Il 3 Introduction =] =
©Harald Racke

Convex Sets

Theorem 19
If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof
» suppose x is optimal solution that is not extreme point
> there exists direction d + O suchthat x +d € P
Ad =0 because A(x £d) =b
» Wlog. assume c’d > 0 (by taking either d or —d)
Consider x + Ad, A > 0

v

v

‘m EADS Il 3 Introduction =]
©Harald Racke

Convex Sets

©Harald Racke

3 Introduction

Convex Sets

Case 1. [djs.t. d; < 0]

©Harald Racke

3 Introduction

Convex Sets

Case 1. [djs.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0

m EADS Il 3 Introduction =]
©Harald Racke

Convex Sets

Case 1. [djs.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A'd) =band x + A’'d = 0

m EADS Il 3 Introduction =]
©Harald Racke

Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A'd) =band x + A’'d = 0

» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)

‘m EADS Il 3 Introduction =) =
©Harald Racke

Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’'d) =band x +A’d = 0
» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
» cIx' =cT(x+A'd) =cTx+AcTd=cTx

‘m EADS Il 3 Introduction
©Harald Racke

Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x +A'd) =band x + A’'d = 0

» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)

»clx' =cT(x+Ad) =cTx+AcTd=cTx

Case 2. [dj = O forall j and c’d > 0]

‘m EADS Il 3 Introduction =] =
©Harald Racke

Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’'d) =band x +A’d = 0
» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
» cIx' =cT(x+A'd) =cTx+AcTd=cTx

Case 2. [dj = O forall j and c’d > 0]
» x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=0

‘m EADS Il 3 Introduction
©Harald Racke

Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A" until first component of x + Ad hits 0
» x + A'd is feasible. Since A(x + A’'d) =band x +A’d = 0
» x + A’d has one more zero-component (d; = 0 for x; = 0 as
xX+deP)
» cIx' =cT(x+A'd) =cTx+AcTd=cTx

Case 2. [dj = O forall j and c’d > 0]
» x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=20
»asA—oo,cl(x+Ad) - oascld>0

‘m EADS Il 3 Introduction
©Harald Racke

Algebraic View
beer b

An extreme point in R4 is uniquely de-
fined by d linearly independent equa-
tions.

A

alea

Notation
Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.

‘m EADS Il 3 Introduction =)
©Harald Racke

Notation

Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.
Then x is extreme point iff Ag has linearly independent columns.

m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume x is not extreme point

‘m EADS Il 3 Introduction =)
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume x is not extreme point

» there exists directiond s.t. x +d € P

‘m EADS Il 3 Introduction =]
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume x is not extreme point
» there exists directiond s.t. x +d € P

» Ad = 0 because A(x =d) =b

‘m EADS Il 3 Introduction =]
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | xj > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b
» define B = {j | d; + 0}

‘m EADS Il 3 Introduction =]
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b

define B' = {j | d; + 0}

Ap' has linearly dependent columns as Ad =0

v

v

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b

define B' = {j | d; + 0}

Ap' has linearly dependent columns as Ad =0

v

v

v

dj=0forall jwithx; =0asx+d =0

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume Xx is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x £d) =b
» define B = {j | d; + 0}
» Ap has linearly dependent columns as Ad =0
» d;j=0forall jwithx;=0asx+d =0

» Hence, B’ € B, Ap’ is sub-matrix of Ap

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

‘m EADS Il 3 Introduction =) =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

» assume Ap has linearly dependent columns

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

» assume Ap has linearly dependent columns
» there exists d + 0 such that Agd =0

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)
» assume Ap has linearly dependent columns
» there exists d + 0 such that Agd =0
» extend d to R" by adding 0-components

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)
» assume Ap has linearly dependent columns
» there exists d + 0 such that Agd =0
» extend d to R" by adding 0-components
» now, Ad = 0 and d; = O whenever x; =0

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

>

| 2

>

assume Ag has linearly dependent columns
there exists d + 0 such that Agd =0
extend d to R™ by adding O-components
now, Ad = 0 and d; = 0 whenever x; = 0

for sufficiently small A we have x + Ad € P

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (=)

>

| 2

>

assume Ag has linearly dependent columns
there exists d + 0 such that Agd =0
extend d to R™ by adding O-components
now, Ad = 0 and d; = 0 whenever x; = 0
for sufficiently small A we have x + Ad € P

hence, x is not extreme point

‘m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 20
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
If Ag has linearly independent columns then x is a vertex of P.

0O jeB
1 j¢B
» thenc’x =0andc’y=0foryeP

> define ¢; = J{

» assume ¢’y = 0; then y; =0 forall j ¢ B
» b=Ay = Apyp = Ax = Apxp gives that Ag(xp — Yp) = 0;

» this means that xp = yp since Ap has linearly independent
columns

> wegety=x
» hence, x is a vertex of P

T

EADS Il 3 Introduction & =

©Harald Racke

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ao,...,Amn;

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

Cl1 ifnow by = 3", A; - b; then

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

A1X

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

m
A1x = Zi:Z Ai . AiX

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

m m
Aix = Zi:Z Aj-Aix = Zi:Z A; - b

Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ap,..., A, ; this means

Ay = ZZz A; - Ay, for suitable A;

C1 if now by = 31", A; - b; then for all x with A;x = b; we also
have A;x = b1; hence the first constraint is superfluous

C2 if by # X5 A; - b; then the LP is infeasible, since for all x
that fulfill constraints A», ..., A;;, we have

m m
A1x = Zi:Z Ai . AiX = Zi:Z Ai . bi * bl

From now on we will always assume that the
constraint matrix of a standard form LP has full
row rank.

T

EADS Il 3 Introduction =g
©Harald Racke

Theorem 21
Given P = {x | Ax = b,x = 0}. x is extreme point iff there exists
Bc{1,...,n} with |B| = m and

» Ap is non-singular

> Xp = Alglb >0

» xy =0

where N = {1,...,n} \ B.

m EADS Il 3 Introduction =] =
©Harald Racke

Theorem 21
Given P = {x | Ax = b,x = 0}. x is extreme point iff there exists
B c{l,...,n} with |B| = m and
» Ap is non-singular
> Xp = Alglb >0
> XN = O
where N = {1,...,n} \ B.
Proof

Take B = {j | x; > 0} and augment with linearly independent
columns until |B| = m; always possible since rank(A) = m.

‘m EADS Il 3 Introduction =] =
©Harald Racke

Basic Feasible Solutions

©Harald Racke

3 Introduction

Basic Feasible Solutions

x € R™ is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | x; = 0};

m EADS Il 3 Introduction =]
©Harald Racke

Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Aj) = |J| where J = {j | x; = 0};

x is a basic feasible solution (gultige Basislosung) if in addition
x > 0.

m EADS Il 3 Introduction =] =
©Harald Racke

Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Ajy) = [J| where J = {j | x; # 0};

x is a basic feasible solution (gultige Basislosung) if in addition

x = 0.
A basis (Basis) is an index set B < {1,...,n} with rank(Ag) = m
and |B| = m.

m EADS Il 3 Introduction =] =
©Harald Racke

Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Ajy) = [J| where J = {j | x; # 0};

x is a basic feasible solution (gultige Basislosung) if in addition

x = 0.
A basis (Basis) is an index set B < {1,...,n} with rank(Ag) = m
and |B| = m.

x € R™ with Agx = b and x; = 0 forall j ¢ B is the basic
solution associated to basis B (die zu B assoziierte Basislosung)

m EADS Il 3 Introduction =] =
©Harald Racke

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n — m of the x;’s are zero. The

corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.

‘m EADS Il 3 Introduction =] =
©Harald Racke

Basic Feasible Solutions

Definition 22

For a general LP (min{c”x | Ax = b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.

‘m EADS Il 3 Introduction =) =
©Harald Racke

Algebraic View

{b, Sc, Sm}
(0/40|-120]0|390)

{b, sn, Sm}
(0132/032|550)

beer

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + sm = 1190
a, b,sc,sh,Ssm=0
{a, b, sp}

{a, b, sm}
(12]28]0/0|210)

(19.41/25.53/0/-19.76/0)

{a, b, sc}
(26/14/140/0]0)

{Scs Shy Sm}
(0/0]480|160]1190)

ale {a, sc, sn} {a, sc, Sm}
(34/0130124/0) (40(0/280|0]-210)

Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" beQ™, ce Q" e Q. Does there exist
xeQ"st. Ax=b,x>0,cTx>a?

m EADS Il 3 Introduction
©Harald Racke

Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" beQ™, ce Q" e Q. Does there exist
xeQ"st. Ax=b,x>0,cTx>a?

Questions:
> |Is LP in NP? yes!
> Is LP in co-NP?
> IsLPin P?

Proof:
» Given a basis B we can compute the associated basis
solution by calculating Aglb in polynomial time; then we
can also compute the profit.

‘m EADS Il 3 Introduction =]
©Harald Racke

Observation
We can compute an optimal solution to a linear program in time

o ((:}l) - poly(n, m)).

> there are only <:,’1> different bases.

» compute the profit of each of them and take the maximum

‘m EADS Il 3 Introduction =] =
©Harald Racke

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.

m EADS Il 4 Simplex Algorithm =)
©Harald Racke

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find
the optimum is slow.

Simplex Algorithm [George Dantzig 1947]
Move from BFS to adjacent BFS, without decreasing objective
function.

Two BFSs are called adjacent if the bases just differ in one
variable.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

4 Simplex Algorithm

max 13a + 23b
s.t. 5a+ 15b + s,

4a + 4b + Sp
35a + 20b
a] b] SC) Sh

=480

=160
+ s, = 1190
, Sm =0

m EADS Il 4 Simplex Algorithm
©Harald Racke

4 Simplex Algorithm

max 13a + 23b

s.t. 5a+ 15b + s, =480
4a + 4b + sp =160
35a + 20b + sm = 1190
a, b,sc,sh,sm=0
max Z basis = {s¢, Sh, Sm}
13a + 23b -Z=0 A=B=0
Z =0
5a + 15b + s = 480
_ S = 480
4a + 4b + Sp =160 s = 160
35a + 20b + Sm =1190 Spu= 1190
a, b,sc,sn,Sm >0

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Pivoting Step

max Z
13a + 23b -7Z=0
5a + 15b + s =480
4a + 4b + sp =160
35a + 20b + Sm =1190

a: vaCJShJSm ZO

basis = {s¢, S, Sm}
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190

Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b
35a + 20b

+ Sn

+ Sm

a, bySCJShJSm

-7Z=0
= 480
=160
=1190
>0

basis = {s., Sn, Sm}
a=b=0

Z =0

sc =480

sp =160

Sm= 1190

» choose variable to bring into the basis

Pivoting Step

max Z basis = {S¢, Sh, Sm}

13a + 23b - 7Z=0 a=b=0
Z =0

5a + 15b + s =480

4a + 4b + s, =160 Se = 480
sp =160

35a + 20b + Sm =1190 sm= 1190

a ’ b ’ SC ’ Sh) Sm = O

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective
function

Pivoting Step

max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
4a + 4b + s, =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh) Sm = O

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective
function

» apply min-ratio test to find out by how much the variable
can be increased

Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + su
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
= 160

= 1190

>0

basis = {s., Sn, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

» apply min-ratio test to find out by how much the variable

can be increased

» pivot on row found by min-ratio test

Pivoting Step

max Z
13a + 23b
5a + 15b + s
4a + 4b + su
35a + 20b + Sm
a, b,sc,sn, Sm

~Z=0
= 480
= 160

=1190

>0

basis = {s., Sn, Sm}

a=b=0
Z =0

sc =480
sp =160
Sm= 1190

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

function

» apply min-ratio test to find out by how much the variable

can be increased

» pivot on row found by min-ratio test

» the existing basis variable in this row leaves the basis

max Z
13a + 23b
5a + 15b + s¢
4a + 4b + Sp
35a + 20b + Sm
a, b,sc,sn, Sm

-7Z=0
= 480
=160
=1190
>0

basis = {s¢, S, Sm}
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190

max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
d4a+ 4b + s, =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a , b y SC 5 Sh 5 Sm > O

» Choose variable with coefficient > 0 as entering variable.

max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
d4a+ 4b +sp =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh) Sm = O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
d4a+ 4b +sp =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh) Sm = O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
4a + 4b + s, =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh) Sm = O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.

max Z basis = {S¢, Sh, Sm}
13a + 23b - 7Z=0 a=b=0
Z =0
5a + 15b + s =480
4a + 4b + s, =160 Se = 480
sp =160
35a + 20b + Sm =1190 sm= 1190
a ’ b ’ SC ’ Sh) Sm = O

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 6 > O s.t. all
constraints (Ax = b, x = 0) are still fulfilled the objective
value Z will strictly increase.

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.

» The basic variable in the row that gives
min{480/15,160/4 1190/20} becomes the leaving variable.

max Z
13a + 23b

5a + 15b + s
4a + 4b
35a + 20b

+ Sh

+ Sm

a'! bsSc;Sh;Sm

~Z=0
— 480
- 160
= 1190
>0

basis = {S¢, Sh, Sm }

a=b=0
Z =0

S =480
sp =160
Sm= 1190

max Z
13a + 23b
5a + 15b + s
4a + 4b
35a + 20b
a,

+ Sh

+ Sm

bsSc;Sh;Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sn, Sm }
a=b=0

Z =0

Sc =480

sp =160

Sm= 1190

Substitute b = 1—15(480 —5a—s¢).

max Z
13a + 23b

5a + 15b
4a + 4b
35a + 20b

a , b

+ Sc
+ Sh
+ Sm
y Sc 5 Shoy Sm

~Z=0
— 480
~ 160
- 1190
>0

basis = {s¢, Sn, Sm}

a=b=0
Z =0

S =480
sp =160
Sm= 1190

Substitute b =

(480 - 5a - s¢).

max Z

23
155¢

1

155¢

4

2sc + Sm

SCJSh’Sm

- Z=-736
=32
=32
=550
=0

basis = {b, sp, i }

a =5.=0
Z =736
b =32
Sh =32
Sm= 550

3 a - 155¢ - Z
%a +b + %Sc

%a — 15Sc + S

%a 3Sc + Sm

-736
32
=32
=550
=0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

mai;ei _ 2, _z=-736 || e
3a+Db+ s =32 Z =736
Sa st =32 0T
%a — %gc £ G =550 s:1= 550
a,b, Ssc,Sn, Sm >0

Choose variable a to bring into basis.

8, B,
%a+b+%sc

%a —%SC+Sh

%a = %SC + Sm
a,b, Ss.,Sn,Sm

= —-736
=32
=32
=550
=0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.

B, - B
%a+b+%sc

%a —%SC+Sh

%a - %SC + Sm
a,b, Ssc,sn, Sm

= —-736
=32
=32
=550
=0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.

Substitute a = %(32 + %Sc - Sn).

8, -3,
%a+b+%sc

%a —%SC+Sh

%a %sc + Sm
a,b, sc,sn,Sm

— =

>

-736
32

32
550
0

basis = {b, sp, sm}

a=s5.=0
Z =736
b =32
Sp =32
Szp= 520

Choose variable a to bring into basis.
Computing min{3 - 32,3-32/8,3-550/85} means pivot on line 2.
Substitute a = %(32 + %Sc - Sn).

max Z
— Sc— 2sp
b + f—osc - %sh
a - 11*05c + %Sh
%sc gsh + Sm
a,b, s, Sn,Sm

-Z

-800
28
=12
=210
>0

basis = {a, b, s}

Se =§n =0
Z =800
b =28
a =12
Sm= 210

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:

‘m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:

» any feasible solution satisfies all equations in the tableaux

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z = 800 — s, — 2sp, S¢ = 0,5, = 0

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z = 800 — s, — 2sp, S¢ = 0,5, = 0

» hence optimum solution value is at most 800

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are
non-positive.

Solution is optimal:
» any feasible solution satisfies all equations in the tableaux
> in particular: Z = 800 — s, — 2sp, S¢ = 0,5, = 0
» hence optimum solution value is at most 800

» the current solution has value 800

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Matrix View
Let our linear program be

CIJ;XB

Apxp
XB

+ ANXN
) XN

%

Ny

©Harald Racke

4 Simplex Algorithm

Matrix View
Let our linear program be
CIJ;—XB + CNXN
Apxp + ANXN
XB XN

The simplex tableaux for basis B is

(ch — cEAgtAN) XN
Ixp + AEIANXN
xXp XN

%

v

Z
b
0
Z - cLAg'p
Aglb
0

m EADS Il 4 Simplex Algorithm
©Harald Racke

Matrix View
Let our linear program be

CIJ;—XB + CNXN

Apxp + ANXN
XB XN

The simplex tableaux for basis B is

(C]E — C%AEIAN)XN
Ixp + AElANXN
Xp XN

The BFS is given by xy = 0,xp = Az'b.

%

v

Z
b
0
Z - cLAg'p
Aglb
0

‘m EADS Il 4 Simplex Algorithm
©Harald Racke

Matrix View
Let our linear program be

chB + c{,xN = 7
Apxp + AnNXN = b
XB y xy = O

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.

‘m EADS Il 4 Simplex Algorithm
©Harald Racke

Geometric View of Pivoting

max 13a + 23b
s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190
a, b,sc,sh,Ssm=0

/
7

— -

Geometric View of Pivoting

max 13a + 23b
s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190
a, b,sc,sh,Ssm=0

/
7

e AN

ale

Geometric View of Pivoting

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

{b, sn, sm}OL2m

/

;-

/

beer

\\\
\\
| AN

_T{sc,s;..sm} _

ale

Geometric View of Pivoting

max 13a + 23b

<

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

/
~

. AN

ale

Geometric View of Pivoting

max 13a + 23b
s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190
a, b,sc,sh,Ssm=0

/
7

e AN

ale

Geometric View of Pivoting

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

/
~

\\
AN

I ale {a, s¢, sn}

Geometric View of Pivoting

beer

max 13a + 23b

s.t. S5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + s, = 1190

a, b,sc,sh,Ssm=0

)

{Sc, Sn,

m}

ale

{a, sc, sn}

Geometric View of Pivoting

max 13a + 23b

s.t. 5a+ 15b + s =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sh,sm=0

~—

beer

Algebraic Definition of Pivoting

» Given basis B with BFS x*.

m EADS Il 4 Simplex Algorithm
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;k from 0 to 6 > 0.

m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.
» Other non-basis variables should stay at 0.

‘m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:

» d; =1 (normalization)

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B,L+j

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B, L+j
» A(x* + 60d) = b must hold. Hence Ad = 0.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Algebraic Definition of Pivoting

» Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;‘ from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
» Basis variables change to maintain feasibility.

» Go from x* to x* + 0 - d.

Requirements for d:
» d; =1 (normalization)
»dp=0,0¢B, L+j
» A(x* + 60d) = b must hold. Hence Ad = 0.
» Altogether: Apdp + A, = Ad = 0, which gives
dp = —AglA,;.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Algebraic Definition of Pivoting

Definition 23 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢B,l+jand dg = —Ag' A, is called the j-th basis
direction for B.

m EADS Il 4 Simplex Algorithm =)
©Harald Racke

Algebraic Definition of Pivoting

Definition 23 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; = 1 and
dp=0,0¢ B, L+ janddg=—-Az'A,; is called the j-th basis
direction for B.

Going from x* to x* + 0 - d the objective function changes by

0-cld=0(c; - cfAg'Asj)

‘m EADS Il 4 Simplex Algorithm =)
©Harald Racke

Algebraic Definition of Pivoting

Definition 24 (Reduced Cost)
For a basis B the value

5o AT aA-1g .

is called the reduced cost for variable x;.

Note that this is defined for every j. If j € B then the above term
is O.

‘m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Algebraic Definition of Pivoting

Let our linear program be

C};—XB

Apxp
XB

T

+ ANXN
) XN

%

S N

©Harald Racke

4 Simplex Algorithm

Algebraic Definition of Pivoting
Let our linear program be

chB + c{,xN = 7
Apxp + AnNXN = b
XB y xy = O

The simplex tableaux for basis B is

(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = Aglb
XB ’ XN > O

m EADS Il 4 Simplex Algorithm
©Harald Racke

Algebraic Definition of Pivoting
Let our linear program be

T T

CgXp + CyXNn = Z
Apxp + AnNXN = b
XB y XN = 0
The simplex tableaux for basis B is
(ch — A AN)XN = Z-cfAglD
Ixp + AglAnxn = Aglb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

‘m EADS Il 4 Simplex Algorithm
©Harald Racke

Algebraic Definition of Pivoting
Let our linear program be

T T

CgXp + CyXNn = Z
Apxp + AnNXN = b
XB y xy = O
The simplex tableaux for basis B is
(ch —ctAR*ANXN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB ’ XN > O

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.

‘m EADS Il 4 Simplex Algorithm
©Harald Racke

4 Simplex Algorithm

Questions:

©Harald Racke

4 Simplex Algorithm

4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
» Is there always a basis B such that

(ch—clAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 0
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?
» Is there always a basis B such that

(ch—clAz'AN) <0 ?

Then we can terminate because we know that the solution is
optimal.

> If yes how do we make sure that we reach such a basis?

T

EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

What happens if all b;/A;, are negative? Then we do not have a
leaving variable.

Min Ratio Test

The min ratio test computes a value 6 > 0 such that after setting
the entering variable to 6 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;. (and hence A;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

What happens if all b;/A;, are negative? Then we do not have a
leaving variable. Then the LP is unbounded!

Termination

©Harald Racke

4 Simplex Algorithm

Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

Does it always increase?

‘m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Termination

The objective function may not increase!

m EADS Il 4 Simplex Algorithm
©Harald Racke

Termination

The objective function may not increase!

Because a variable x, with £ € B is already 0.

m EADS Il 4 Simplex Algorithm
©Harald Racke

Termination
The objective function may not increase!

Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 25 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;‘ > 0} fulfills
lJ] < m.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

Termination

The objective function may not increase!
Because a variable x, with £ € B is already 0.

The set of inequalities is degenerate (also the basis is
degenerate).

Definition 25 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;‘ > 0} fulfills
lJI <m.

It is possible that the algorithm cycles, i.e., it cycles through a
sequence of different bases without ever terminating. Happens,
very rarely in practise.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Non Degenerate Example

3,,4 max 13a + 23b
< st 5a+15b + s = 480
4a + 4b + Sp =160
35a + 20b + Sm = 1190

% a, b,sc,Sh,5m=0

beer

] ale

Degenerate Example

beer

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0

ale

Degenerate Example

max 13a + 23b
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

I {Scy Shy Sm} ale

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
Cor I 35a + 20b + Sm = 1190
n
\ a, b,sc,sn,sm=0
)
[
!
A
S A
o B
3|
< Q,’
! a-direc.

{Sc, Shy Sm} ale

Degenerate Example

max 13a + 23b
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

I {Sc, Shy Sm} ale {a, s¢, sn}

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

_ B .
| tscs s sm3 ale {a, s¢, sn}

Degenerate Example

max 13a + 23b
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

I {Sc, Shy Sm} ale {a, s¢, sn}

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

| {Sc, Shy Sm}

Degenerate Example

3 max 13a + 23b
%
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

| {Scy Shy Sm} ale {a, sc, sn}

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,Ssm=0

beer

| {8cy Sy sm} ale ta, sc, sn}

Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

‘m EADS Il 4 Simplex Algorithm =) =
©Harald Racke

Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Ajp <Oforallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum by/ Ay, you reach a
degenerate basis.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(€, is reduced cost for x,).

» The standard choice is the column that maximizes ¢,.

» If Aj, <O forallie {1,...,m} then the maximum is not
bounded.

» Otw. choose a leaving variable £ such that by/Ay, is
minimal among all variables i with A;, > 0.

> If several variables have minimum by/ Ay, you reach a
degenerate basis.

» Depending on the choice of £ it may happen that the
algorithm runs into a cycle where it does not escape from a
degenerate vertex.

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the
LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails
and we can conclude that the LP is unbounded, or we terminate
because the vector of reduced cost is non-positive. In the latter
case we have an optimum solution.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

How do we come up with an initial solution?

» Ax <b,x>=0,and b = 0.

m EADS Il 4 Simplex Algorithm
©Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

How do we come up with an initial solution?

» Ax <b,x >0,and b = 0.

» The standard slack from for this problem is
Ax +1Is =b,x = 0,s = 0, where s denotes the vector of
slack variables.

» Then s = b, x = 0 is a basic feasible solution (how?).
> We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary
problem?

‘m EADS Il 4 Simplex Algorithm = =
©Harald Racke

Two phase algorithm

©Harald Racke

4 Simplex Algorithm

Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

m EADS Il 4 Simplex Algorithm
©Harald Racke

Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

‘m EADS Il 4 Simplex Algorithm =)
©Harald Racke

Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

3. If >}; v; > 0 then the original problem is infeasible.
4. Otw. you have x > 0 with Ax = b.

5. From this you can get basic feasible solution.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

Two phase algorithm

Suppose we want to maximize ¢'x s.t. Ax = b, x > 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v > 0 using
Simplex. x = 0, v = b is initial feasible.

If >; v; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v MW

Now you can start the Simplex for the original problem.

‘m EADS Il 4 Simplex Algorithm =
©Harald Racke

Optimality

Lemma 26
Let B be a basis and x* a BFS corresponding to basis B. ¢ <0
implies that x* is an optimum solution to the LP.

‘m EADS Il 4 Simplex Algorithm =)
©Harald Racke

Duality

How do we get an upper bound to a maximization LP?

max

s.t.

13a + 23b

5a + 15b <480

4a + 4b <160

35a + 20b <1190
a,b >0

T

EADS Il
©Harald Racke

5.1 Weak Duality

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b >0

Note that a lower bound is easy to derive. Every choice of
a,b > 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).

m EADS II 5.1 Weak Duality &
©Harald Racke

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b >0

Note that a lower bound is easy to derive. Every choice of
a,b > 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;a;; = cj then > ; y;b; will be an
upper bound.

‘m EADS II 5.1 Weak Duality & =
©Harald Racke

Duality

Definition 27
Let z = max{c’x | Ax < b,x = 0} be a linear program P (called

the primal linear program).
The linear program D defined by

w=min{bTy | ATy = ¢,y =0}

is called the dual problem.

m EADS Il 5.1 Weak Duality =]
©Harald Racke

Duality

Lemma 28
The dual of the dual problem is the primal problem.

m EADS II 5.1 Weak Duality
©Harald Racke

Duality
Lemma 28
The dual of the dual problem is the primal problem.

Proof:

» w=min{bTy | ATy > ¢,y >0}

m EADS I 5.1 Weak Duality
©Harald Racke

Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

m EADS I 5.1 Weak Duality
©Harald Racke

Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is

» z=-min{-cTx | —Ax > —b,x > 0}

m EADS Il 5.1 Weak Duality
©Harald Racke

Duality

Lemma 28

The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is
» z=-min{-c'x | ~Ax = —b,x = 0}

» z=max{cTx | Ax <b,x >0}

m EADS Il 5.1 Weak Duality
©Harald Racke

Weak Duality

Let z = max{c'x | Ax < b,x = 0} and

w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy > ¢,y = 0}.

m EADS II 5.1 Weak Duality
©Harald Racke

Weak Duality

Let z = max{c'x | Ax < b,x = 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy > ¢,y = 0}.

Theorem 29 (Weak Duality)
Let X be primal feasible and let y be dual feasible. Then

cx<z<w<bly .

m EADS II 5.1 Weak Duality
©Harald Racke

Weak Duality

ATy > ¢

©Harald Racke

5.1 Weak Duality

Weak Duality

ATy >c = xTATy > xT¢

©Harald Racke

5.1 Weak Duality

Weak Duality

AT >c = xTATY > %Tc (X = 0)

m EADS II 5.1 Weak Duality
©Harald Racke

Weak Duality

AT >c = xTATY > %Tc (X = 0)

AX <Db

m EADS Il 5.1 Weak Duality
©Harald Racke

Weak Duality

AT >c = xTATY > %Tc (X = 0)

AX <b=yTAx <9Tp

m EADS Il 5.1 Weak Duality
©Harald Racke

Weak Duality

AT >c = xTATY > %Tc (X = 0)

AX <b=yTAX <9Th (¥ = 0)

‘m EADS I 5.1 Weak Duality
©Harald Racke

Weak Duality

AT >c = xTATY > %Tc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

o}
=
IA
2
H
N
=
IA

m EADS II 5.1 Weak Duality
©Harald Racke

Weak Duality

ATy >c= xTATY = xTc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

Since, there exists primal feasible X with ¢’X = z, and dual
feasible ¥ with b7y = w we get z < w.

m EADS Il 5.1 Weak Duality =]
©Harald Racke

Weak Duality

ATy >c = TATY = %Tc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

Since, there exists primal feasible X with ¢’X = z, and dual
feasible ¥ with b7y = w we get z < w.

If P is unbounded then D is infeasible.

m EADS Il 5.1 Weak Duality =]
©Harald Racke

The following linear programs form a primal dual pair:

z=max{cIx | Ax = b,x > 0}

w=min{bTy | ATy = ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.

m EADS II 5.1 Weak Duality & =
©Harald Racke

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z=max{cIx | Ax =b,x > 0}

w=min{bTy | ATy = ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.

‘m EADS Il 5.2 Simplex and Duality = =
©Harald Racke

Proof

Primal:

max{cTx | Ax = b, x > 0}

©Harald Racke

5.2 Simplex and Duality

Proof

Primal:

max{cTx | Ax = b, x > 0}
=max{c'x | Ax <b,-Ax < —b,x = 0}

‘m EADS I 5.2 Simplex and Duality
©Harald Racke

Proof

Primal:

max{cTx | Ax = b, x > 0}
=max{c'x | Ax <b,-Ax < —b,x = 0}

= max{cTx | I:_AA:|X < [_hb],x >0}

m EADS I 5.2 Simplex and Duality
©Harald Racke

Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{c'x | Ax <b,-Ax < —-b,x > 0}

= max{cTx | I:_AA:|X < [_hb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y > ¢,y = 0}

m EADS I 5.2 Simplex and Duality
©Harald Racke

Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{c'x | Ax <b,-Ax < —-b,x > 0}

= max{cTx | |:_AA:|X < [_hb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y > ¢,y = 0}

= min{[bT -pT]. [§+] [AT —AT]. [Jﬁ} >c,y 20,7 > 0}

m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{cTx | Ax <b,—-Ax < —b,x > 0}

= max{cTx | I:_AA:|X < [_bb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y = ¢,y = 0}
=min{[bT —bT]-[y+]‘[AT—AT]-[y+}>c y‘>0y+>0}
v yo| 0 T
=min{bT-(y+—y‘)‘AT-(y+—y‘)zc,y‘zO,y+zO}

m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof
Primal:

max{cTx | Ax = b, x > 0}

=max{cTx | Ax <b,—-Ax < —b,x > 0}

= max{cTx | I:_AA:|X < [_bb],x >0}

Dual:

min{[bT -bT]y | [AT —-AT]y = ¢,y = 0}
yr yr
=min{[bT ~b']- [] ‘ [AT -AT]. [} z¢,y 20,y" 20}
v ¥
=min{p" - (y* - y7) [AT- (v -y)=y 20yt = 0]
Ty | ATy’ zc}

= min{b y'

m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢

m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy*

m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* _ (AX*)Ty*

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*
= (Apx) T (A Tcp

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*

= (Apx;) T (AN Tep = (x)T AL (AgY Tep

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Agxj)Ty*

= (ABXB)T(Agl)TCB = (XB)TAB (Agl)TCB

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.
bTy* _ (AX*) y (ABX*)T_')/*

= (ABXB)T(Agl)TCB = (XB)TAB (Agl)TcB

Hence, the solution is optimal.

‘m EADS Il 5.2 Simplex and Duality =) =
©Harald Racke

beer

>
T \\%‘N
\

<& \x_
+ O
'Q
| ale

The profit vector c lies in the cone generated by the normals for
the hops and the corn constraint.

beer

>
T \\%‘N
\

<& \x_
+ O
'Q
| ale

The profit vector c lies in the cone generated by the normals for
the hops and the corn constraint.

Strong Duality

Theorem 30 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

zm=w

‘m EADS Il 5.3 Strong Duality A =) =
©Harald Racke

Strong Duality

Theorem 31 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

zm=w

‘m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Lemma 32 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{ f(x) : x € X} exists.

m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Lemma 33 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)T(x — x*) <0.

‘m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Proof of the Projection Lemma
» Define f(x) = ||y — x|

EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of the Projection Lemma

» Define f(x) = ||y — x|
» We want to apply Weierstrass but X may not be bounded.

EADS Il 5.4 Strong Duality B &
©Harald Racke

Proof of the Projection Lemma

» Define f(x) = ||lv — x|l.
» We want to apply Weierstrass but X may not be bounded.
» X =+ (0. Hence, there exists x’ € X.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

X # (. Hence, there exists x’ € X.
Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

vV v VY

We want to apply Weierstrass but X may not be bounded.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

X # (. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

vV v VY

v

We want to apply Weierstrass but X may not be bounded.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma (continued)

‘m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|2 < ||y — x||2 for all x € X.

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy = x*|1%

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Proof of the Projection Lemma (continued)
x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

ly —x*)I12 < ly —x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

Letting € — 0 gives the result.

m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Theorem 34 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

',H={x|aTx=0(}

EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

» Choose a = (x* — y) and & = al x*.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

» Choose a = (x* — y) and & = al x*.
» Forx e X:al(x —x*) =0, and, hence, a’x > «.

,:H={x|aTx=o<}

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
» Choose a = (x* — y) and & = al x*.

» Forx e X:al(x —x*) =0, and, hence, a’x > «.

v

Also, aTy =al(x* —a) =« — ||al® < «

,:H={x|aTx=o<}

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Lemma 35 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Lemma 35 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" with Ax = b, x =0
2. 3y e R with ATy =0,bTy <0
Assume X satisfies 1. and y satisfies 2. Then

0>y'h=yTAx >0

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Lemma 35 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0

Assume X satisfies 1. and y satisfies 2. Then

0>y'h=yTAx >0

Hence, at most one of the statements can hold.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of Farkas Lemma

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x > 0} so that S closed, convex, b ¢ S.

We want to show that there is y with ATy >0, bTy < 0.

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0.

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x
arbitrarily large.

Lemma 36 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy =0,bTy <0,y =0

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Lemma 36 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy =0,bTy <0,y =0

Rewrite the conditions:

1. 3x € R™ with [AI]-[)SC]=b,sz,szO

T

A
2. dy € R™ with [

I]yzo,bTy<0

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of Strong Duality

P: z=max{cTx | Ax < b,x >0}

D: w=min{bTy |ATy > ¢,y =0}

Theorem 37 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .

‘m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Proof of Strong Duality

m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

z < w: follows from weak duality

m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

w: follows from weak duality

N
IA

zZ = W:

m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

w: follows from weak duality

N
IA

zZ > w:
We show z < o implies w < «.

m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

w: follows from weak duality

N
IA

zZ > w:
We show z < o implies w < «.

dx € R"
s.t. Ax =< b
-cTx < -«
x = 0

‘m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R" dy e R"™;v eR
s.t. Ax =< b s.t.
-cTx < -«
x = 0

ATy —cv
bTy — v
y,v

vV A IV

)

‘m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

N
IA

w: follows from weak duality

zZ > w:
We show z < o implies w < «.

dx € R" dy e R"™;v eR
s.t. Ax < b s.t. ATy —cv
-cTx < -« bTy — v
x = 0 Y,V

vV A IV

)

From the definition of o« we know that the first system is
infeasible; hence the second must be feasible.

‘m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

dy e R"™;v e R

st. Aly—wv
bTy — o
Y,V

vV A IV

e}

5.4 Strong Duality B

©Harald Racke

Proof of Strong Duality

dy e R"™;v e R

st. Aly—wv
bTy — o
Y,V

vV A IV

e}

If the solution y,v has v = 0 we have that

dy e R™
st. ATy = 0
bTy < 0
y = 0

is feasible.

5.4 Strong Duality B

©Harald Racke

Proof of Strong Duality

dy e R"™;v e R

st. Aly—-v > 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of Strong Duality

m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

m EADS Il 5.4 Strong Duality B
©Harald Racke

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
We can rescale this solution (scaling both y and v) s.t. v = 1.

Then v is feasible for the dual but bTy < «. This means that
w < K.

‘m EADS Il 5.4 Strong Duality B =)
©Harald Racke

Fundamental Questions

Definition 38 (Linear Programming Problem (LP))

Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

m EADS Il 5.4 Strong Duality B
©Harald Racke

Fundamental Questions

Definition 38 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

‘m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Fundamental Questions

Definition 38 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"'st. Ax=b,x=0,c'x=a?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:

» Given a primal maximization problem P and a parameter «.

Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

‘m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Fundamental Questions

Definition 38 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"st. Ax =b,x>0,cTx>x?

Questions:
> |Is LP in NP?
» |Is LP in co-NP? yes!
> Is LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.

‘m EADS Il 5.4 Strong Duality B =) =
©Harald Racke

Complementary Slackness

Lemma 39
Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1. Ifx;f‘ > 0 then the j-th constraint in D is tight.

. If the j-th constraint in D is not tight than xJ’.k = 0.

2
3. If y/ > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than v = 0.

‘m EADS Il 5.5 Interpretation of Dual Variables =
©Harald Racke

Complementary Slackness

Lemma 39

Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1.

Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x;k =0.
3.
4. If the i-th constraint in P is not tight than y; = 0.

If v} > 0 then the i-th constraint in P is tight.

If we say that a variable x‘;k (v/) has slack if xj* >0 >0),
(i.e., the corresponding variable restriction is not tight) and a
contraint has slack if it is not tight, then the above says that for
a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*

m EADS Il 5.5 Interpretation of Dual Variables
©Harald Racke

Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*

Because of strong duality we then get

CTX* — y*TAx* — bTy*
This gives e.g.
Z(yTA —chjx; =0
J

‘m EADS Il 5.5 Interpretation of Dual Variables
©Harald Racke

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain
cIx* < p*TAx* < bTy*
Because of strong duality we then get
cTx* = y*TAx* _ bTy*

This gives e.g.

>yTa- cT)J-x;k =0

J
From the constraint of the dual it follows that ¥ A > ¢T. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190

a,b =0

Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0

Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M >13
15C + 4H + 20M =23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

‘m EADS I 5.5 Interpretation of Dual Variables = =
©Harald Racke

Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &y, respectively.

‘m EADS Il 5.5 Interpretation of Dual Variables
©Harald Racke

Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?

> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,

and &y, respectively.
The profit increases to max{c!x | Ax <b + &x = 0}.

‘m EADS Il 5.5 Interpretation of Dual Variables
©Harald Racke

Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &y, respectively.
The profit increases to max{c’x | Ax <b + &x = 0}. Because of
strong duality this is equal to

min (b7 +€T)y
s.t. ATy
y

2%
(e}

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Interpretation of Dual Variables

m EADS I 5.5 Interpretation of Dual Variables
©Harald Racke

Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Ei_’)/l-*.

‘m EADS I 5.5 Interpretation of Dual Variables = =
©Harald Racke

Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; &;y/".

Therefore we can interpret the dual variables as marginal prices.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; Eiyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; siyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Example

max 13a + 23b

s.t. 5a+15b + s¢ =480
4a + 4b + Sn =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0

beer

-T ale

Example

max 13a + 23b

s.t. 5a+15b + s¢ =480
4a + 4b + Sn =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0

beer

-T ale

Example

>
4 ¢ max 13a + 23b
N < s.t. 5a+ 15b + sc =480
| X 4a + 4b + Sh =160
orn 3 35a + 20b + Sm = 1190
lr,’,.ec , a, b,sc,sn,sm=0
{u, 1'7:3':1} ‘{:
Czb

beer

\

\

_-T ale

Example

max 13a + 23b
s.t. 5a + 15b + s. =480
'4 4a + 4b + S =160
NS 35a + 20b + Sm = 1190

a b,sc,sh,Sm=0

N)

beer

ale

Example

max 13a + 23b
s.t. 5a + 15b + s. =480
'4 4a + 4b + S =160
NS 35a + 20b + Sm = 1190

a b,sc,sh,Sm=0

N)

beer

ale

Example

max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0

beer

--T ale

The change in profit when increasing hops by one unit is
_ T -1

Example

max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0

beer

--T ale

The change in profit when increasing hops by one unit is
= chgleh.
——

y*

Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Flows

Definition 40
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)

m EADS II 5.5 Interpretation of Dual Variables = =
©Harald Racke

Flows

Definition 40
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)

m EADS II 5.5 Interpretation of Dual Variables = =
©Harald Racke

Flows

Definition 41
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .

m EADS II 5.5 Interpretation of Dual Variables
©Harald Racke

Flows

Definition 41
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.

m EADS I 5.5 Interpretation of Dual Variables
©Harald Racke

LP-Formulation of Maxflow

T

max 2z foz =22 fzs
st. V(z,w)eVxV o 2 Cow Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Sfsy (y #s,b): 145, +1py = 1
Sxs (x #5,t): 1xs—1px > -1
Sty (¥ #5,t): 141y +1lpy =2 O
St (x #5,1): 10y —1py > 0
fot: 104 > 1
[8 10 > -1
Lscy > 0
EADS Il 5.5 Interpretation of Dual Variables =) =

©Harald Racke

LP-Formulation of Maxflow

.
EADS Il 5.5 Interpretation of Dual Variables B =y =
©Harald Racke 110/491

LP-Formulation of Maxflow

with p; =0 and p; = 1.

.
EADS Il 5.5 Interpretation of Dual Variables B =y =
©Harald Racke 111/491

LP-Formulation of Maxflow

.
EADS Il 5.5 Interpretation of Dual Variables B =y =
©Harald Racke 112/491

LP-Formulation of Maxflow

min Z(xy) Cxylxy

st fry: xy—lpx+lpy, = 0
Oxy =2 0
pPs = 1
pt = O

We can interpret the £, value as assigning a length to every edge.

‘m EADS I 5.5 Interpretation of Dual Variables =
©Harald Racke

LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

‘m EADS Il 5.5 Interpretation of Dual Variables =) =
©Harald Racke

One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.

‘m EADS Il 5.5 Interpretation of Dual Variables = =
©Harald Racke

Flows

Definition 42
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)

m EADS II 5.6 Computing Duals = =
©Harald Racke

Flows

Definition 42
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)

m EADS II 5.6 Computing Duals = =
©Harald Racke

Flows

Definition 43
The value of an (s, t)-flow f is defined as

Val(f) = Zfsx - fos .

‘m EADS II 5.6 Computing Duals
©Harald Racke

Flows

Definition 43
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.

m EADS I 5.6 Computing Duals
©Harald Racke

LP-Formulation of Maxflow

T

max 2z foz =22 fzs
st. V(z,w)eVxV o 2 Cow Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Sfsy (y #s,b): 145, +1py = 1
Sxs (x #5,t): 1xs—1px > -1
Sty (¥ #5,t): 141y +1lpy =2 O
St (x #5,1): 10y —1py > 0
fot: 104 > 1
[8 10 > -1
Lscy > 0
EADS II 5.6 Computing Duals =] =

©Harald Racke

LP-Formulation of Maxflow

.
EADS Il 5.6 Computing Duals A = =
©Harald Racke 117/491

LP-Formulation of Maxflow

with p; =0 and p; = 1.

.
EADS Il 5.6 Computing Duals A = =
©Harald Racke 118/491

LP-Formulation of Maxflow

.
EADS Il 5.6 Computing Duals B A= AE
©Harald Racke 119/491

LP-Formulation of Maxflow

min Z(xy) Cxylxy

st fry: xy—lpx+lpy, = 0
Oxy =2 0
pPs = 1
pt = O

We can interpret the £, value as assigning a length to every edge.

‘m EADS I 5.6 Computing Duals =
©Harald Racke

LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

‘m EADS Il 5.6 Computing Duals =) =
©Harald Racke

LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) = d(x,t) < #Xy +d(y,t)).

‘m EADS Il 5.6 Computing Duals =) =
©Harald Racke

One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

‘m EADS Il 5.6 Computing Duals =) =
©Harald Racke

One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

‘m EADS Il 5.6 Computing Duals =) =
©Harald Racke

One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.

‘m EADS Il 5.6 Computing Duals =) =
©Harald Racke

Degeneracy Revisited

©Harald Racke

6 Degeneracy Revisited

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

‘m EADS II 6 Degeneracy Revisited = =
©Harald Racke

Degenerate Example

beer

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,Sc,Sh,Ssm=0

ale

Degenerate Example

max 13a + 23b
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

I {Scy Shy Sm} ale

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
Cor I 35a + 20b + Sm = 1190
n
\ a, b,sc,sn,sm=0
)
[
!
A
S A
o B
3|
< Q,’
! a-direc.

{Sc, Shy Sm} ale

Degenerate Example

max 13a + 23b
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

I {Sc, Shy Sm} ale {a, s¢, sn}

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

_ B .
| tscs s sm3 ale {a, s¢, sn}

Degenerate Example

max 13a + 23b
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,sm=0

beer

I {Sc, Shy Sm} ale {a, s¢, sn}

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

| {Sc, Shy Sm}

Degenerate Example

3 max 13a + 23b
%
s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
p I 35a + 20b + Sm = 1190
Or,7
\ a, b,sc,sn,sm=0

beer

| {Scy Shy Sm} ale {a, sc, sn}

Degenerate Example

max 13a + 23b

s.t. 5a + 15b + s =480
80/17-a + 4b + Sp =160
35a + 20b + Sm = 1190

a, b,sc,sn,Ssm=0

beer

| {8cy Sy sm} ale ta, sc, sn}

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

‘m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’ x, Ax = b;x = 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’ x, Ax = b;x = 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

I. LP is feasible

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’ x, Ax = b;x = 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

I. LP’ is feasible

Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible
basis in LP’ (note that columns in Ag are linearly
independent).

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’x, Ax = b;x > 0}. Change it into
LP' := max{cTx,Ax = b’,x = 0} such that

I. LP’ is feasible

Il. If a set B of basis variables corresponds to an infeasible
basis (i.e. Az'b # 0) then B corresponds to an infeasible
basis in LP’ (note that columns in Ag are linearly
independent).

Il. LP’" has no degenerate basic solutions

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Perturbation

Let B be index set of some basis with basic solution

X§ =Ag'b = 0,x35 =0 (i.e. Bis feasible)

m EADS I 6 Degeneracy Revisited
©Harald Racke

Perturbation

Let B be index set of some basis with basic solution

X§ =Ag'b = 0,x35 =0 (i.e. Bis feasible)

Fix

b':=b+Apg| ! | fore>0.

sm

This is the perturbation that we are using.

‘m EADS II 6 Degeneracy Revisited
©Harald Racke

Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

m EADS I 6 Degeneracy Revisited =
©Harald Racke

Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

Agl|b+Ap| : =xj+| 1]|=20.

gm gm

m EADS I 6 Degeneracy Revisited =
©Harald Racke

Property Il

Let B be a non-feasible basis. This means (A]glb)i < 0 for some
row i.

m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

&
Azl | b+ Ap

em
i

m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
Azl |b+Ag| = (Az'D)i + | Az'Ap | <0

em em
i i

‘m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &
AN b+ Ap| = (Az'h)i+ | Azl Ap | <0
em emn

i i

Hence, B is not feasible.

‘m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

m EADS I 6 Degeneracy Revisited
©Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

A;AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Property lll

Let B be a basis. It has an associated solution

in the perturbed instance.

We can view each component of the vector as a polynom with
variable € of degree at most m.

AlglAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots
(Nullstellen).

Hence, € > 0 small enough gives that no component of the
above vector is 0. Hence, no degeneracies.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Since, there are no degeneracies Simplex will terminate when
run on LP'.

m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills
¢=(ct-cfAgla) <0

then we have found an optimal basis.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Since, there are no degeneracies Simplex will terminate when
run on LP'.

» |If it terminates because the reduced cost vector fulfills

= (cl —cfAgta) <0

™

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not
depend on b.

» If it terminates because it finds a variable x; with ¢; > 0 for
which the j-th basis direction d, fulfills d = 0 we know that
LP is unbounded. The basis direction does not depend on
b. Hence, we also know that LP is unbounded.

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

‘m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:

‘m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:
Simulate behaviour of LP” without explicitly doing a perturbation.

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

m EADS I 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

m EADS I 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and
LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

‘m EADS Il 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by
replacing the initial system (Ap | b) by (Ag'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

Then the perturbed instance is

b"=b+

Em

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Matrix View
Let our linear program be

ckxp + chxy = Z
Apxp + AnNXN = b
XB y xy = O
The simplex tableaux for basis B is
(cf —ctAR*AN)XN = Z-ciAR'D
Ixp + AglAnxn = A,;lb
XB s XN = 0

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAgtAN) < 0 we know that we have an optimum
solution.

‘m EADS I 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes
Op

m EADS I 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes .

_ by
A€e

0p

m EADS I 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes .
by (Ap'b)y

9€ = = T 1. . -
Age (ABlA*e)€

m EADS I 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes
o, bv _ _Ag'b)y

Ao (Ap'Ase)y
{ is the index of a leaving variable within B. This means if e.qg.
B ={1,3,7,14} and leaving variable is 3 then £ = 2.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

Definition 44
U <jex v if and only if the first component in which u and v
differ fulfills u; < v;.

m EADS II 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

m EADS I 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

&
Azl b+
0 =74
‘o (Ap'Ase)g

m EADS I 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

1

& _1 &

Azl | b+ | : Ap (B 1) :

‘- (Ap Ase)g T (A Ak

m EADS I 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

LP’ chooses an index that minimizes

1
& 1 b &
A
Azl b+ 5 (P11 :
o em 0 em
{ -1 -1
(AB A*e)# (AB A*e)€
_ {-throwof Ag'(b | 1) | €
(AlglA*e)ﬂ
em

m EADS I 6 Degeneracy Revisited
©Harald Racke

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b |)

(AglAse)p

is lexicographically minimal.

‘m EADS I 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b |)

(AglAse)p

is lexicographically minimal.

Of course only including rows with (AglA*e)g > 0.

‘m EADS Il 6 Degeneracy Revisited =
©Harald Racke

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
£-th row of AgY(b |)

(AglAse)p

is lexicographically minimal.

Of course only including rows with (AglA*e)g > 0.

This technique guarantees that your pivoting is the same as in

the perturbed case. This guarantees that cycling does not occur.

‘m EADS Il 6 Degeneracy Revisited = =
©Harald Racke

Number of Simplex Iterations

m EADS I 7 Klee Minty Cube
©Harald Racke

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

'Ml EADS Il 7 Klee Minty Cube =]
©Harald Racke

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (;:L) iterations, because it will not visit a basis twice.

m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (rﬁ) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

‘m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (rﬁ) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (;) iterations then Simplex is not a

polynomial time algorithm.

‘m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial
time.

If we use lexicographic pivoting we know that Simplex requires
at most (Z) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables,
m is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (;) iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

‘m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.

m EADS I 7 Klee Minty Cube
©Harald Racke

Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

m EADS Il 7 Klee Minty Cube =]
©Harald Racke

=T R Rt
max ¢ x e !
st. 0<x; <1 | | I
| | |
0<xp <1 ! ! :
c ! | |
. | | I
. | | |
0<xp<1 | | |
| \-N
“{ L
X1 T -7

21 constraint on n variables define an n-dimensional hypercube
as feasible region.

The feasible region has 2" vertices.

m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Example

I Rt
max ¢ x e !
st. 0<x; <1 | | I
| | |
0<xp <1 ! ! :
c ! | |
. | | I
. | | |
0<xp<1 | | |
| \-N
“{ L
X1 T -1

However, Simplex may still run quickly as it usually does not
visit all feasible bases.

In the following we give an example of a feasible region for
which there is a bad Pivoting Rule.

m EADS II 7 Klee Minty Cube =]
©Harald Racke

Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving
variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable
the leaving variable is unique.

m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Klee Minty Cube

max X
s.t. 0<x; <1
€EX] < X2 <1-€x,
€Ex?» < x3 <1-€x>2
€EXn-1 <Xn <1-€xn-1
Xi = 0

0,0,1)

(l,e,ea,

Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).

Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and 7 non-basic
variables.

Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and 7 non-basic
variables.

» There exist degenerate vertices.

Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and 7 non-basic
variables.

» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

Observations

» We have 2n constraints, and 37 variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and 7 non-basic
variables.

» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

> In the following all variables x; stay in the basis at all times.

Observations

» We have 2n constraints, and 3n variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.

» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

» In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding
to the non-tight constraint is part of the basis).

Observations

» We have 2n constraints, and 3n variables (after adding
slack variables to every constraint).

» Every basis is defined by 2n variables, and n non-basic
variables.
» There exist degenerate vertices.

» The degeneracies come from the non-negativity constraints,
which are superfluous.

» In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding
to the non-tight constraint is part of the basis).

» We can also simply identify each basis/vertex with the
corresponding hypercube vertex obtained by letting € — 0.

Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

T

EADS Il 7 Klee Minty Cube =)
©Harald Racke

Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

m EADS II 7 Klee Minty Cube =]
©Harald Racke

Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence S, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.

‘m EADS II 7 Klee Minty Cube =]
©Harald Racke

Analysis

> In the following we specify a sequence of bases (identified
by the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence S, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.

» An unfortunate Pivoting Rule may choose this sequence,
and, hence, require an exponential number of iterations.

T

EADS Il 7 Klee Minty Cube =)
©Harald Racke

Klee Minty Cube

max X
s.t. 0=<x1 =<1
€EX] <x2 <1-€x1
€EXr < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| !
I
: ! 0,1,
(1, € €24 - Txo

Klee Minty Cube

max X
s.t. 0=<x1 =<1
€EX] < x2 <1-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| !
I
: ! 0,1,
(1, € €24 - Txo

Klee Minty Cube

max X
s.t. 0<x; <1
€EX] < x2 <1-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| !
I
: ! 0,1,
(1, € €24 - Txo

Klee Minty Cube

max X
s.t. O0=<x1 =<1
€EX]1 < Xxp2 <1—-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| |
I
: ! 0,1,
(1, € €2) - Txo

Klee Minty Cube

max X
s.t. 0=<x1 =<1
€EX]1 < Xxp2 <1—-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| |
I
: ! 0,1,
(1, € €2) - Txo

Klee Minty Cube

max X
s.t. 0=<x1 =<1
€EX]1 < Xxp2 <1—-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| |
I
: ! 0,1,
(1, € €2) - Txo

Klee Minty Cube

max X
s.t. O0=<x1 =<1
€EX]1 < Xxp2 <1—-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| !
I
: ! 0,1,
(1, € €2) - Txo

Klee Minty Cube

max X
s.t. O0=<x1 =<1
€EX] < x2 <1-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| |
I
: ! 0,1,
(1, € €2) - Txo

Klee Minty Cube

max X
s.t. 0=<x1 =<1
€EX] < x2 <1-€x1
€EX? < Xx3<1—-€x2
(0,0,1)
0,1,1 -¢€)
; 1
: (1,1 -¢€1-¢€+¢€)
|
I
I
I
I
I
I
I
I
I
I
I
I
| |
I
: ! 0,1,
(1, € €2) - Txo

Analysis

The sequence S, that visits every node of the hypercube is
defined recursively

(0,...,0,0,0)

ésn—l
0,...,0,1,0)

s
0,...,0,1,1)

% et
0,...,0,0,1)

The non-recursive caseis S =0 —1

m EADS II 7 Klee Minty Cube =]
©Harald Racke

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.
n-1-n

For the first part the value of x;, = €x5,_1.

v

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

1: obvious, since S =0—-1,and 1 > 0.

n
n-1-n
For the first part the value of x;, = €x5,_1.

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

v

v

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

1: obvious, since S =0—-1,and 1 > 0.

n
n-1-n

For the first part the value of x;, = €x5,_1.

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.

v

v

v

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:
n = 1: obvious, since S =0—-1,and 1 > 0.
n-1-n

For the first part the value of x;, = €x5,_1.

v

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.

For the remaining path S, we have x,, = 1 — €xy 1.

v

v

v

Analysis

Lemma 45
The objective value x,, is increasing along path S, .

Proof by induction:

n = 1: obvious, since S =0—-1,and 1 > 0.

n_

>

>

1-n

For the first part the value of x;, = €x5,_1.

By induction hypothesis x;,,—1 is increasing along S, -1,
hence, also x,.

Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.

For the remaining path S, we have x,, = 1 — €xy 1.

By induction hypothesis x;,,—1 is increasing along Sy _1,

hence —ex,_1 is increasing along S;7,.

Remarks about Simplex

Observation
The simplex algorithm takes at most (;‘L) iterations. Each
iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.

m EADS I 7 Klee Minty Cube
©Harald Racke

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for
choosing entering and leaving variables) there exist lower
bounds that require the algorithm to have exponential running
time (Q(29M)) (e.g. Klee Minty 1972).

m EADS II 7 Klee Minty Cube =] =
©Harald Racke

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Q(22"*)) for « > 0) (Friedmann,
Hansen, Zwick 2011).

m EADS Il 7 Klee Minty Cube =] =
©Harald Racke

Remarks about Simplex

Conjecture (Hirsch 1957)
The edge-vertex graph of an m-facet polytope in d-dimensional
Euclidean space has diameter no more than m — d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form
O(poly(m,d)) is open.

‘m EADS II 7 Klee Minty Cube =] =
©Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

> If d is much smaller than m one can do a lot better.

> In the following we develop an algorithm with running time
O(d! -m), i.e., linear in m.

T

EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

Setting:

» We assume an LP of the form

min cTx
s.t. Ax =
x =

» We assume that the LP is bounded.

m EADS Il 8 Seidels LP-algorithm
©Harald Racke

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

‘m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke

Theorem 46 (Cramers Rule)
Let M be a matrix with det(M) + 0. Then the solution to the

system Mx = b is given by
det(Mj)

Xi = det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Proof:

[T

EADS Il
©Harald Racke

8 Seidels LP-algorithm

Proof:

» Define

Xj

el...ej*lxej‘*’l...

T

EADS Il
©Harald Racke

8 Seidels LP-algorithm

Proof:

» Define
| L |
Xj: el"'ej—lxejﬂ"'en

Note that expanding along the j-th column gives that
det(Xj) = Xj.

T

EADS Il 8 Seidels LP-algorithm
©Harald Racke

Proof:

» Define
| L |
Xj: el"'ej—lxejﬂ"'en

| L |
Note that expanding along the j-th column gives that
det(Xj) = Xj.
» Further, we have

MX; = Mey - - Mej 1 Mx Mej,q --- Mey =M,

‘m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

Proof:

» Define
| L |
Xj: 31"'ej—1xej+1"'en

Note that expanding along the j-th column gives that
det(Xj) = Xj.

» Further, we have

MX; = Mey - - Mej 1 Mx Mej,q --- Mey =M,

» Hence,
det(Mj)
x; = det(X;) = 7det(M)

‘m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

|det(C)]

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

ldet(C)l = | > sgn(m) [] Cine

TESH 1<i<m

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

ldet(C)l = | > sgn(m) [] Cine
TESH I<i<m
< > [1 [Cinwl

mESM 1<i<m

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ap by replacing the j-th
column with vector b.

Observe that

|det(C)| > sgn(m) [] Cing

TESH 1<i<m

> I1 [Cinl

mESM 1<i<m

IA

<m!-ZM .

‘m EADS Il 8 Seidels LP-algorithm = =
©Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)|

m EADS Il 8 Seidels LP-algorithm
©Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| < H ICil

m EADS Il 8 Seidels LP-algorithm
©Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

§

|det(C)| < 1‘[||C*l|| 1‘[(%@

m EADS Il 8 Seidels LP-algorithm
©Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

§

|det(C)| < 1‘[||C*l|| 1‘[(%@

< mm/zzm)

m EADS Il 8 Seidels LP-algorithm
©Harald Racke

Hadamards Inequality

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black
cube (if [[e1ll = llarll, lle2ll = llazll, llesll = llasll).

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution. Add the constraint c’x = —-mZ(m!- Z™) — 1.

Note that this constraint is superfluous unless the LP is
unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.

‘m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

[T

EADS Il
©Harald Racke

8 Seidels LP-algorithm

In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set # of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set # of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x=-(mz)y(m!-zZm) - 1.

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;
2. if 4 = 0 then return x on implicit constraint hyperplane

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;
2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3:
4
5

choose random constraint h € H

- H — H\ {h}
. ®* — SeidelLP(#{,d)

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

o v W =

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

\IOWU'IJSUUN—

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a,Tlx = by,

NP2 R T

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., a,Tlx = by,
solve agx = by, for some variable xy;
: eliminate xp in constraints from H and in implicit constr.;

S PRI LINIT

—

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5: X* — SeidellLP(H,d)

6: if Xx* = infeasible then return infeasible

7. if X* fulfills h then return £*

8: // optimal solution fulfills h with equality, i.e., a,Tlx = by,
9: solve agx = by, for some variable xy;

0: eliminate xp in constraints from H and in implicit constr.;
1: X* — SeidellLP(H,d — 1)

Algorithm 1 SeidelLP(H,d)

A w N - O 0

NP2 R T

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a,Tlx = by,
solve agx = by, for some variable xy;

: eliminate xp in constraints from H and in implicit constr.;

* — SeidellP(H,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution

8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

‘m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

» If d = 1 we can solve the T-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

‘m EADS Il 8 Seidels LP-algorithm =
©Harald Racke

8 Seidels LP-algorithm

» If d = 1 we can solve the T-dimensional problem in time
O(m).

» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and X* does not fulfill h we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

T

EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

If d = 1 we can solve the 1-dimensional problem in time
O(m).

If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m —1,d — 1).

The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function

T

EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

This gives the recurrence

O(m) ifd=1

o(d) ifd>1landm =20
od) +T(m—1,d)+
4(O(dm)+Tim-1,d-1)) otw.

T(m,d) =

Note that T'(m, d) denotes the expected running time.

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cm ifd=1

cd ifd>1land m =0
Cd+T(m-1,d)+

%(Cdm+ Tim-1,d-1)) otw.

T(m,d) =

Note that T(m, d) denotes the expected running time.

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

8 Seidels LP-algorithm

Let C be the largest constant in the @-notations.

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1:

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1)

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) <Cm

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) <Cm < Cf(1)max{l, m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1m=0:
T(0,d) <0O(d)

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1m=0:
T0,d) <0(d) <Cd

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd*>+dCf(d-1)

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd>+dCf(d—-1)
< Cf(d)max{l,m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) <Cm < Cf(1)max{l,m} for f(1) > 1

d>1,m=0:
T(0,d) <0(d) <Cd < Cf(d)max{l,m} for f(d) = d

d>1m-=1:
T(1,d) = O(d) + T(0,d) + d(0(d) + T(0,d ~ 1))
<Cd+Cd+Cd>+dCf(d—-1)
< Cf(d)max{1,m} for f(d) =3d*> +df(d—1)

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

m EADS Il 8 Seidels LP-algorithm
©Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))

<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

<2CA+Cf(d(m—-1)+dCf(d-1)

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) =O0(d) + T(m - 1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2CA° +Cf(d)(m—-1)+dCf(d—-1)

<Cf(dym

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) = O(d) + T(m —1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2Cd*+Cf(d)(m—1)+dCf(d—1)
<Cf(dym

if f(d)=df(d-1)+2d>.

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1.

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d)

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d°+df(d-1)

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1.

Then
F(d) =3d%+df(d-1)
=3d%+d [3(d— D2+ (d—-1)f(d- 2)]

m EADS Il 8 Seidels LP-algorithm =)
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d? +df(d-1)
=3d?+d[3(d-1%+(d-1)f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d-2)-...-4-3-2-12

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d-2)-...-4-3-2-12

_ d> (d-1)? (d-2)?
_3d!<d!+ (d—l)!+ d—2)l +>

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d-2)-...-4-3-2-12

_ d> (d-1)? (d-2)?
_3d!<d!+ (d—l)!+ d—2)l +>

=0(d!)

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
F(d) =3d* +df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d* +3d(d—-1)>+3d(d—-1)(d—2)* +
+3dd-1)(d-2)-...-4-3-2-12

a> (d-1)?2 (d-2)°
—3d< (d—l)'+(d—2)!+"'>

=0(d!)

. i2 .
since >;.; 7 is a constant.

m EADS Il 8 Seidels LP-algorithm =) =
©Harald Racke

Complexity

LP Feasibility Problem (LP feasibility)

» Given A € 7™*" b € 7™. Does there exist x € R with
Ax =b,x = 0?

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Complexity

LP Feasibility Problem (LP feasibility)

» Given A € 7™*" b € 7™. Does there exist x € R with
Ax =b,x = 0?

> Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Complexity

LP Feasibility Problem (LP feasibility)
» Given A € 7™*" b € 7™. Does there exist x € R with
Ax =b,x =0?

> Note that allowing A, b to contain rational numbers does
not make a difference, as we can multiply every number by
a suitable large constant so that everything becomes
integral but the feasible region does not change.

Is this problem in NP or even in P?

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Bit Model

Input size

» The number of bits to represent a number a € Z is

[log,(lal)1+1

The Bit Model

Input size

» The number of bits to represent a number a € Z is

[log,(lal)1+1

» Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

L(M) := > [log,(Imj]) + 1]
i

The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)1+1

» Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

L(M) := > [logy(Im;|) + 11
i,]
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)1+1

» Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

L(M) := > [log,(Imj]) + 1]
i,]
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is ©(L([A|b])).

> In the following we sometimes refer to L := L([A|b]) as the
input size (even though the real input size is something in
O(L([Alb]))).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L([A|b])).

T

EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

Suppose that Ax = b; x = 0 is feasible.

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Suppose that Ax = b; x = 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xp = Aﬁlb

and all other entries in x are O.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Size of a Basic Feasible Solution

Lemma 47

Let M € 7™"™ be agn invertable matrix and let b € 7™ . Further
define L' = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components x j of the form %, where |D ;| < 2L and
ID| < 2L,

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

Size of a Basic Feasible Solution

Lemma 47

Let M € 7™*™ be an invertable matrix and let b € 7™. Further
define L' = L([M | b]) + nlog, n. Then a solution to Mx = b has
rational components x j of the form %, where |D ;| < 2L and
ID| < 2L,

Proof:
Cramers rules says that we can compute x; as

det(M;)

Xi T det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

|det(X)]

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

detx)| = | S sgn() [] Xineo

TESH l<izn

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

|det(X)] > sgn(m) [] Xiri)

TESH l<izn

> T Xino!

mesSy 1<i<n

IA

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xima)
TESH l<izn
< >] Xinl

TESy 1<i<n
<nl- 2L([A|b])

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xima)
TESH l<izn
< >] Xinl

mesSy 1<i<n

< n! . 2LUAIPD o« ynol

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xima)
TESH l<izn
< >] Xinl

mesSy 1<i<n

<n!.2LUAIPD o ynol o oL"

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [[Xin@
TESH l<izn
< >] Xinl

mesSy 1<i<n

<n!.2LUAIPD o ynol o oL"

Analogously for det(M;).

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

[T

EADS Il
©Harald Racke

9 The Ellipsoid Algorithm

This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

This means if Ax = b, x > 0 is feasible we only need to consider
vectors x where an entry x; can be represented by a rational
number with encoding length polynomial in the input length L.

Hence, the x that we have to guess is of length polynomial in the
input-length L.

For a given vector x of polynomial length we can check for
feasibility in polynomial time.

Hence, LP feasibility is in NP.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Reducing LP-solving to LP decision.

Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint c’x — &8 = M; 6§ = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint c’x — &8 = M; 6§ = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22l ,
10g2 <W> =0(") ’

as the range of the search is at most —n22L" ... 122" and the

) . . 1 1
distance between two adjacent values is at least g5z = S

Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint c’x — &8 = M; 6§ = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22l ,
10g2 <W> =0(") ’

as the range of the search is at most —n22L" ... 122" and the
distance between two adjacent values is at least m > 2%
Here we use L' = L([A | b | c]) + nlog, n (it also includes the
encoding size of ¢).

How do we detect whether the LP is unbounded?

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢’ x > Mpyax + 1 and check for feasibility.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Ellipsoid Method

©Harald Racke

9 The Ellipsoid Algorithm

Ellipsoid Method

> Let K be a convex set.

©Harald Racke

9 The Ellipsoid Algorithm

Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke

Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke

Ellipsoid Method

>

>

Let K be a convex set.

Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

If center z € K STOP.

Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

Shift hyperplane to contain
node z. H denotes half-
space that contains K.

Compute (smallest)
ellipsoid E’ that
contains K N H.

T

EADS I 9 The Ellipsoid Algorithm =) = =
©Harald Racke

Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains K N H.

> REPEAT

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» What if the polytop K is unbounded?
» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a
non-empty polytop?

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Definition 48
A mapping f : R" — R™ with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Definition 49
A ball in R™ with center ¢ and radius 7 is given by

B(c,v)={x|(x—-c)T(x-c) <7r?}

={x|D(x-02/r* <1}

B(0,1) is called the unit ball.

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Definition 50
An affine transformation of the unit ball is called an ellipsoid.

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1))

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1)) ={f(x) | x € B(0,1)}

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" [(y-0TL L1 (y-t) <1}

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}
—{yeR" | (y-0TL L Y y-—1) <1}
={yeR"|(y-Hloty-t) <1}

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" | (y-0TL L Y y-—1) <1}
={yeR" | (y-t)lQ Y (y-t) <1}

where Q = LLT is an invertible matrix.

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

How to Compute the New Ellipsoid

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

A}

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke

The Easy Case

» The new center lies on axis x;. Hence,

¢ =te; fort > 0.

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.

» The vectors e, e2,... have to fulfill the ellipsoid constraint
. . A1 Ar—1 A1
with equality. Hence (e; —¢)TQ" (e; —¢') = 1.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Easy Case

. .ooa,1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

. .ooa,1 . LA A
» The obtain the matrix Q" ~ for our ellipsoid E’ note that E’
is axis-parallel.

> Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Easy Case

» The obtain the matrix O’ for our ellipsoid £ note that £

is axis-parallel.

Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

The matrix
a 0 0
- b
L' =
: . . 0
0O ... 0 b

maps the unit ball (via function /' (x) = ' x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.

T

EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

>ASQ'=

L

7

L

t oA
" the matrix Q'

~!is of the form
50 0
) 0
0 0

T

EADS Il
©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

A1 A/_]- A .
» (e1—¢)TQ" (e1 —¢') =1 gives

T

1—t % o ... O 1—t
1 .
0 0 42 0 .
. . 0 .
0 0 0 # 0
» This gives (1 —t)2 = a?.
EADS I 9 The Ellipsoid Algorithm & E

©Harald Racke

The Easy Case

» For i # 1 the equation (e; — c"’)TQ’_l(ei —¢’) =1 gives

N1 t
- - 0 ... O N
a?l
1 0 1 - : 1
0 . b? o 0 =1
: Do 0 :
: 0 0o 4 :
0 . bz 0
» This gives 2 + 32z = 1, and hence
1 t?
-l e

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» For i # 1 the equation (e; — c"’)TQ’_l(ei —¢’) =1 gives

N1 t
N - 0 ... 0 B
a?l
1 0 1 - : 1
0 . b? o 0 =1
: Do 0 :
: 0 0o 4 :
0 . bz 0
» This gives 2 + 32z = 1, and hence
2 2
D L L
b2 az? (1-1)2

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» For i # 1 the equation (e; — c"’)TQ’_l(ei —¢’) =1 gives

LN t
N = 0 .0 B
a?l
1 0 L 1
0 b? 0 (=1
: . 0 :
: 0 0o 4 :
0 . b2 0
» This gives 2+ > = 1, and hence
i—l—ﬁﬂ— 2 1-2t
b2~ a? (1-1)2 (1-1)2

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Summary

So far we have

1-t
=1-t d b=——
“ o -2t

‘m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We still have many choices for ¢:

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!

‘m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!

‘m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!

‘m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!

‘m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!

‘m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

We want to choose t such that the volume of £’ is minimal.

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

We want to choose t such that the volume of £’ is minimal.

Lemma 51
Let L be an affine transformation and K < R™. Then

vol(L(K)) = |det(L)| - vol(K) .

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

n-dimensional volume

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where Q' = 11",

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where O = /1",

» We have
1
Lo 0 a 0
LR .
Pt o O b " | and L' =
0 0 3 0 0 b

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

» We want to choose t such that the volume of E’ is minimal.
vol(E") = vol(B(0,1)) - |det(L")]| ,

where O = /1",

» We have
1
Lo 0 a o 0
- .
Pt o O b " | and L' =
0 0 3 0 0 b

» Note that a and b in the above equations depend on t, by
the previous equations.

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

vol(E")

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]
=vol(B(0,1)) - ab™!

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]

=vol(B(0,1)) - ab™!

=vol(B(0,1)) - (1 —1¢) - (

1-—
1 -

t
2

t

e

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

vol(E") = vol(B(0,1)) - |det(L")]

=vol(B(0,1)) - ab™!
=vol(B(0,1)) - (1 —t) - (

=vol(B(0,1)) -

1-t

V1=2t
_a-on
(V1 =2t)n"1

e

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

dvol(E")
dt

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

A ()

- (VI-20)n!

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

dvol(E’) _i((1-0n)
dt dt \(VI-20)"!
1
-

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

dvol(E') (1-p")
dt (V1T =2t)n"1
G(1) -n(1-t)r !

derivative of numerator |

2‘»—* Q‘“Q-'

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

dvol(E')
dt

2‘»—* Q‘“Q-'

(s

(1r-o")
(/1_)nl

((D-n(1-6)" 1.

\/;n 1

denominator

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

dvol(E")
dt

~ai (i 20m1)

= % : ((—1) (-0 (V1-20"!

~(m-1K1-20)"?2

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

dvol(E’) _i((1-0n)
dt dt \(V1-20n!
= % : ((—1) n(1-0" . (1-20)n!

i —opn-2, L
(n—1)(V1=2t) s (2

inner derivative

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

dvolE) _ d (-0)
dt dt \(V1T-2p)n!
= % : ((—1) (-0 (V1-20"!
1
~(n-1E1-20)"2. S(=2)- (1 -t
2J1-2t
9 The Ellipsoid Algorithm =] =

©Harald Racke

The Easy Case

dvol(E") d((1-t)")

dt dt \(v1I =21
_ % . ((—1) n(1-" . 1-2t)n!
_ — —_ 1’[72_ 1 . — . — n
(n-1)~1-2t) =2 (=2)- (1 t))

1 n— n-—
=W-(\/1—2t) S.a-pnt

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

dvol(E")
dt

d (1-t)"
= 3t (gr=201) .

_ 1 ((_1) -n(l1 —t)n L W

-
—m-nGI-20m?. L (.a- t)”)

2V1 -2t
1 n-— n-—
=2 Wi-20) 51—t

©Harald Racke

9 The Ellipsoid Algorithm & =

The Easy Case

dvol(E") d((1-t)")

dt dt \(vV1-2t)n! 1 — ot
= % : ((—1) n(l - (e T

- NPT (-2) - (1 t)”)

1 n— n-—
=W-(\/1—2t) S.a-pnt

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

dt (V1=2t)n-1 1 — ot
((1) - n(—t7 T (21T

—(n—l)(;ﬂéfi N .27;%.(_2).(1_”)
1 n— n-—
=W-(\/1—2t) .-t

dvol(E") di< (1-t)")
1
= N2

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

dt (V1=2t)n-1 1 — ot
((1) - n(—t7 T (21T
1-t

~(n -1 LA—20" -27%-(—2)-1,1/4‘)’”
1 n— n-—
=W-(\/1—2t) S.1-nn!

dvol(E") di< (1-t)")
1
= N2

)

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

dvol(E') d ((1-6")

~ar — n—1
dt t \(V1-2t) 12t

:le'(<—1>-nu/ﬁ*"f-(ml
1-t¢
_ 1
#(n—1)1—27) Lﬁ%ﬂ/ﬁ”

1 n— n-—
=ﬁ-(\/1—2t) .-t

)

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

dvol(E') d ((1-6")

~ar — n—1
dt t \(V1-2t) 12t

= % . ((—1) n(L—t T (2T
1-t¢
= 1
#(n - 1) [1—217 Z%%W>
1 n— n—
=ﬁ-(\/1—2t) 51—t

. ((n— DA-t)-n(- 2t))

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

dvol(E') d ((1-6")

~ar — n—1
dt t \(V1-2t) 1—2¢

- e (0 nper T T
1-t
_ 1
#(n - 1) 1217 Z%%ﬂ/ﬁn)
1 n— n—
=ﬁ-(\/1—2t) S.(1-pnt
-((n—l)(l—t)—n(l—Zt))

=$-(1—2t)"3-(1—t)"1-((n+1)t—1)

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t= n and b =
n+1

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t= n and b =
n+1

1-t

1-2t

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t =

» For this value we obtain

a=1-t= n and b
n+1

L

n+1-

1-t

1-2t

n2 -1

©Harald Racke

9 The Ellipsoid Algorithm

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 n+1 T-2t JnZ-1

To see the equation for b, observe that

b2

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 nil T-2t JnZ-1
To see the equation for b, observe that

(1 -1t)?

2 _
b* = 1-2t

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 n+1 T-2t JnZ-1

To see the equation for b, observe that

1-02 (1-59)?
1-2t 1--2

n+1

b* =

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ni

[l ‘

» For this value we obtain

a=1-t= n and b =
n+

To see the equation for b, observe that

(1-1)? _,(1 — n+1)2 (n+1)2
1-2t 1 - -2 n-1

n+1 n+1

b* =

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 nil T-2t JnZ-1
To see the equation for b, observe that
bhe = (1-1)° _ (1_n+1)2 (n+1)2 _ n?
1-2t 1- -2 n-1 ne -1
n+1 n+l

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

_ _vol(F) _
Let y,, = vol(B(0,1))
changes:
Ya

= ab™ ! be the ratio by which the volume

©Harald Racke

9 The Ellipsoid Algorithm &

The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

2 2 -1
Vi = (n? 7) <n2n— 1>n

1 1 n-1
-(1- 37 O e)

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

1 2 1 n-1
) D)

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume

changes:

1 2 1 n-1
) D)

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

The Easy Case

vol(E")

Let yn = woiso1) = @b ! be the ratio by which the volume

changes:

1 2 1 n-1
:<1_n+1) <1+ (n—l)(n+1)>

where we used (1 + x)% < e** forx € Rand a > 0.

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Easy Case

vol(E")

Let yn = woiso1) = @b ! be the ratio by which the volume

changes:

1 2 1 n-1
:<1_n+1) <1+ (n—l)(n+1)>

where we used (1 + x)% < e** forx € Rand a > 0.

1
This gives y, < e 20=1),

‘m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

How to Compute the New Ellipsoid

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

A}

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

\

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformatio
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

‘m EADS Il 9 The Ellipsoid Algorithm = = =
©Harald Racke

Our progress is the same:

e 2(n+l)

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

1 vol(E")

e 2n+l) >

~ vol(B(0,1))

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

1 vol(E') vol(E")

e 2+ >

~ vol(B(0,1)) vol(E)

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

1 vol(E') vol(E') vol(R(E"))

e 2+ >

~ vol(B(0,1)) vol(E) vol(R(E))

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

R vol(E") _ Vol(E"A’) _ Vol(R(E"A’))
~ vol(B(0,1)) vol(E) vol(R(E))
_ vol(E")
~ vol(E)

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

1 vol(E") B vol(E") B vol(R(E"))

e 2+ >

~ vol(B(0,1)) vol(E) vol(R(E))
_ Vol(E') _ vol(f(E"))
~ vol(E) vol(f(E))

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

1 vol(E") B vol(E") B vol(R(E"))

e 2+ >

~ vol(B(0,1)) vol(E) vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")
~ vol(E) vol(f(E)) vol(E)

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

Our progress is the same:

. vol(E") _ vol(E") _ vol(R(E"))
“vol(B(0,1)) vol(E) vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")

~ vol(E) vol(f(E)) vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx + t changes the volume by factor det(L).

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

FYH) = {fHx) lal(x —c) <0}

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | al (x — ¢) < 0};

FYH) = {fHx) lal(x —c) <0}
={fYf) lal (f(y)—-c) <0}

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};
fHH) = {f) lal(x—¢) <0}

={fYf) lal (f(y)—-c) <0}
={ylal(f(y)-c) <0}

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | al (x — ¢) < 0};
SHH) = {f71) lal (x - ¢) <0}
= {1 la’ (f(y) —c) <0}

={yla'(f(y)-c) =<0}
={y|aT(Ly+c—c)sO}

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

SHH) = {f ') aT(x—¢) =0}
={f YN la’(f(y)-c) <0}
={yla'(f(y)-c) <0}
={ylal(Ly +c-c) <0}
={y|(a'L)y <0}

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm
How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;
The halfspace to be intersected: H = {x | al (x — ¢) < 0};
fHH) = {f) lal(x—¢) <0}
={f YO lal (f(y) —c) <0}
={yla'(f(y)—c) <0}

= {yIaT(Ly+c—c) < 0}
={y|(@'L)y <0}

This means a = LTa.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1(LTOl >: LTGl

—el - =R-e]
ILTall ILTall

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1(LTOl >: LTGl

—el - =R-e]
ILTall ILTall

Hence,

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1(LTOl >: LTGl

—el - =R-e]
ILTall ILTall

Hence,

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(HLTaH> ILTall
Hence,
-, nr 1
¢ =R-¢ = 1

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal
c=fE)=L-¢"+c
1 LT
= L a +cC

n+1 |LTa|

The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
=—e ——=—-=R-e
(nLTan) ! ILTall !
Hence,
’ A7 1 1 LTa
7 =R-¢" =R - - - =
¢ ¢ n+19 T Tus1LTal

o
Il

‘= f@)=L-¢ +c
1 LTa
= - L +c
n+1 |[LTal

1 Qa

n+1 /aTQa

For computing the matrix Q' of the new ellipsoid we assume in
the following that £/, E” and E’ refer to the ellispoids centered in
the origin.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Recall that

Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives)
A, n 2 T
Q= n2—1<1_n+1e1e1)

Recall that

a? 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
Q' = I — T
n2—1< n+1elel)

because for a = n/n+1 and b = n/\/n2-1

Recall that

a? 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
Q' = I — T
n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
r_ I— T
. n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

2 2

5 2 n 2n

b? - = —~
n+l mn?2-1 n-1H(n+1)2

Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
r_ I— T
. n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

2 2

2 n 3 2n
n+l n2-1 @Mm-1m+1)2
2

b? — b?

n’n+1)-2n
m-1)(n+1)2

Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
r_ I— T
. n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

2 2

2 n 2n

2 g2 _ B
b bn+1 nz-1 m-1)(n+1)2

n?n+1) —2n? n’n-1)

m-1Dn+1)2 @m-1)m+1)2

Recall that

at 0 0
A, 0 b2
Q = .

0 0 b2

This gives
2
A n 2
r_ I— T
. n2—1< n+1e1e1)

because for a = n/n+1 and b = n/\/n2-1

2 2

2 n 2n

2 g2 _ B
b bn+1 nz-1 m-1)(n+1)2

n?n+1) —2n? n’n-1))

m-1n+1)2 @m-1n+1)2

9 The Ellipsoid Algorithm

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

F' =R(E")

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' =R(E)
= {R(x) [xTO" 'x <1}

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

F' =R(E")
= {R(x) | xT0" 'x <1}
= {y | (R"1)TO 'Ry < 1}

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' =R(E)
—R(x) | xTQ 'x <1}
-y I RNTO 'Ry < 13
— v [yT®RN QR 1y <1

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' =R(E)
= {R(x) | xTQ 'x <1}
=y | RTQ 'Ry <1
— v [yT®RN QR 1y <1
={y 1 y"(RQ'RT) 'y < 1}
ra

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,

m EADS Il 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,
Q/:RQIRT
2
n
=R- I- e
n2—1(n+1t
2
n 2
_ R_RT_
n2—1< n+1

elT) -RT

(Re1)(Re1)T)

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,

n

2

n

2

'nz—l(l_nntl

ne -1

n

2

e1e1T> -RT

2
1 (Re1)(Ren)")

(R-RT—

n2 -1

(1 2 LTomTL)
n+1|LTal?

©Harald Racke

9 The Ellipsoid Algorithm

9 The Ellipsoid Algorithm

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' =L(E")

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' =L(E")
= {Lx) [xTQ 'x <1}

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' = L(E')
= (L) | xTQ 'x <1}
=y @I 'Ly <1}

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E = L(E)
= {Lx) [xTQ 'x <1}
=@M Ly <1
=y YT QT Ly < 1}

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

E' =L(E")
= {Lx) [xTQ 'x <1}
@'y Ly <1
=y yTaH Q'L y < 13
={yIyTaQ'LH 'y <1j
o

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,

‘m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,
Q =LQ'L"
_ n? (2 LTaaTL
T o n2-1 n+1 a’Qa

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

9 The Ellipsoid Algorithm

Hence,
Q' =1Q'L’
—L- n2 (2 L'aad'L
B -1 n+1 a’Qa
(Q 2 QaaTQ>
n2 -1 n+1 alQa

)

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:. Q =M

4: repeat

5 if c € K then return ¢

6
7

else
choose a violated hyperplane a
1 Qa
8: cC —Cc-— —_—
n+1 /aTQa
2 T
_ n 2 Qaa'Q
% Q n2—1<Q n+1 aTQa)
10: endif
11: until 77?7

12: return “K is empty”

Repeat: Size of basic solutions

Lemma 52

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n(amax)+2nlog2 n

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Repeat: Size of basic solutions

Lemma 52

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n(amax)+2nlog2 n

In the following we use § := 22" {@max)+2nlog n

Note that here we have P = {x | Ax < b}. The previous lemmas
we had about the size of feasible solutions were slightly
different as they were for different polytopes.

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

Repeat: Size of basic solutions

Proof:

_ A —-A
LetAz[

-A A
vector after transforming the system to standard form.

Im], b= (_bb>, be the matrix and right-hand

The determinant of the matrices Ag and M; (matrix obt. when
replacing the j-th column of Ag by b) can become at most

det(Ap), det(M;) < [[fmaxl*"

< (/27’1 . 2(amax>)2n < 22n<amax)+2nlog2n ,

where Emax is the longest column-vector that can be obtained
after deleting all but 21 rows and columns from A.

This holds because columns from I,,, selected when going from
A to Ap do not increase the determinant. Only the at most 2n
columns from matrices A and —A that A consists of contribute.

How do we find the first ellipsoid?

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.

Hence, P is contained in the cube -6 < x; < 6.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"B(0,1) < (nd)"B(0,1).

‘m EADS Il 9 The Ellipsoid Algorithm = =
©Harald Racke

When can we terminate?

m EADS I 9 The Ellipsoid Algorithm
©Harald Racke

When can we terminate?

Let P:= {x | Ax < b} with Ae Zand b € Z be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

When can we terminate?

Let P:= {x | Ax < b} with Ae Zand b € Z be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.

Consider the following polyhedron

1

P;\:zj(xlesbJr;l\ : },
1

where A = §2 + 1.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 53
P, is feasible if and only if P is feasible.

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Lemma 53
P, is feasible if and only if P is feasible.

< obvious!

m EADS II 9 The Ellipsoid Algorithm
©Harald Racke

Consider the polyhedrons

and

Consider the polyhedrons

and

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.

Consider the polyhedrons

and

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.

P, is bounded since P, and P are bounded.

_ A —A _ b
Let A = [—A A Im],and b= (—b)'

P, feasible implies that there is a basic feasible solution

represented by
1

- 1-
xp =Ag'b + XAgl

(The other x-values are zero)

_ A —A _ b
LetAz[_A A Im],andlo=<_b>.

P, feasible implies that there is a basic feasible solution
represented by

R
xp =Ap'b + XA,gl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

_ A —-A _ b
LetAz[_A A Im],andlo=<_b).

P, feasible implies that there is a basic feasible solution
represented by

R
xp =Ap'b + XA,gl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(Aglb); <0 < (Aglh); + %(Agli)i

By Cramers rule we get

1

A=l ALy, « - &
(Ag'bli<0 = (Ag'h)i=— g rs

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ag by I.

‘m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

By Cramers rule we get

1

(A_Elb)l <0 = (A_Elb)l < —m

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ag by I.

However, we showed that the determinants of Ag and MJ- can
become at most §.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

By Cramers rule we get

1

(A_glk-))l <0 = (A_Elb)l < —m

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ap by I.

However, we showed that the determinants of Ag and MJ- can
become at most §.

Since, we chose A = §2 + 1 this gives a contradiction.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

[T

EADS Il
©Harald Racke

9 The Ellipsoid Algorithm

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

m EADS Il 9 The Ellipsoid Algorithm =)
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(Alx +€));

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(Ax +0)); = (Ax); + (AD);

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl

< bi+laill - 12l

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max>

<b;+ 53

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

n.2(¢1max> 1
Sbi'ﬁ‘fTS i+m

1
Sbl"l‘x

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Lemma 54
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max> _ 1

shit 7 =biv o

1
Sbl"l‘x

Hence, x + Uis feasible for Py which proves the lemma.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

[T

EADS Il
©Harald Racke

9 The Ellipsoid Algorithm

How many iterations do we need until the volume becomes too
small?

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2D . vol(B(0,R)) < vol(B(0,7))

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2D . vol(B(0,R)) < vol(B(0,7))

Hence,

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0O,R)) < vol(B(0,71))

Hence,

vol(B(0,R)))

i>2n+ Dln(vol(B(O,r))

m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0O,R)) < vol(B(0,71))

Hence,

vol(B(0,R)))
vol(B(0,7))

=2(n+1)ln (n”é" . 63")

i>2(n+1)1n(

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2n+1)In (n”é" . 63")

=8nn+1)In(d) +2(n+ 1)nln(n)

i>2(n+1)1n(

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2n+1)In (n”é" . 63")
=8n(n+1)In(d) + 2(n+ 1)nin(n)
= O(poly(n, (amax)))

i>mn+nm(

‘m EADS Il 9 The Ellipsoid Algorithm =) =
©Harald Racke

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R", radii R and r
2 with K < B(¢,R), and B(x,7) < K for some x
3: output: point x € K or “K is empty”

4: Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5. repeat

6 if c € K then return ¢

7
8

else
choose a violated hyperplane a
1 Qa
9: C < C-—
n+1 /aTQa
2 T
n 2 Qaa'Q
10: - - ===
0 Q nz—l(Q n+1 aTQa>
11: endif

12: until det(Q) < ¥2" // i.e., det(L) <"
13: return “K is empty”

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x € R™ and either
» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

» a guarantee that a ball of radius 7 is contained in K,

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,

» an initial ball B(c, R) with radius R that contains K,

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,

> a separation oracle for K.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,
> a separation oracle for K.

The Ellipsoid algorithm requires O (poly(n) - log(R /7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.

‘m EADS Il 9 The Ellipsoid Algorithm =
©Harald Racke

10 Karmarkars Algorithm

> inequalities Ax < b; m x n matrix A with rows a;

10 Karmarkars Algorithm

> inequalities Ax < b; m x n matrix A with rows a;
» P={x| Ax <b}; P°:={x | Ax < b}

10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
» P={x| Ax <b}; P°:={x | Ax < b}

> interior point algorithm: x € P° throughout the algorithm

10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
» P={x| Ax <b}; P°:={x | Ax < b}
> interior point algorithm: x € P° throughout the algorithm
» for x € P° define
si(x):=b; - aiTx

as the slack of the i-th constraint

10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
» P={x| Ax <b}; P°:={x | Ax < b}
> interior point algorithm: x € P° throughout the algorithm
» for x € P° define
si(x):=b; — aiTx

as the slack of the i-th constraint

logarithmic barrier function:
m
$(x) = — > log(si(x))
i=1

Penalty for point x; points close to the boundary have a very
large penalty.

picture of barrier function

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ %eTvzcl)(x)e

Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ leTVZcb(x)e

2
Gradient:
mo .
Ve (x) = 1;1 oo i=Aldx

where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)

Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ %eTvzcl)(x)e

Gradient:
m 1
\V, = ca; = AT
P (x) El) a;=A"dy
where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)
Hessian:
m 1
x = Vop(x) i:§1 51002 i A'DiA

with Dy = diag(dy).

op(x) _ 0 <_Zwrln(sr(X))>

axi aXi

; (1n(sr<x)))
~S w, 0 (s:00))

T, (x) axl

; 1 a(hr)

Sr(x) 0x;

a, x

; s,,(x)ai(T)
; SyX)

The i-th entry of the gradient vector is >, w, /s (x) - Ayi. This
gives that the gradient is

Vp(x) = Zwy/sr(x)ay =ATpD,WI1

ax,<y 0)ZEWVA”(_ST(ic)Z>'aiJ<”(X))

1
=D WAy i———A
; T s (x)2

Note that >, A, ;A = (ATA)ij. Adding the additional factors
wy /sy (x)? can be done with a diagonal matrix.

Hence the Hessian is

Hy, = ATDWDA

Hy is positive semi-definite for x € P°

uTHyu = uTATD2Au = [|DxAull3 = 0

m EADS I 10 Karmarkars Algorithm
©Harald Racke

H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

m EADS I 10 Karmarkars Algorithm
©Harald Racke

H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°

u'Hyu = |DyAul|3 > 0 foru # 0

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = |DyAul|3 > 0 foru # 0

This gives that ¢ (x) is strictly convex.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

H, is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = |DyAul|3 > 0 foru # 0
This gives that ¢(x) is strictly convex.

lullg, := VvulHyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Dilkin Ellipsoid

Ex={y1(-xTHe(y-x) <1} ={y | lly —xlu, <1}

Dilkin Ellipsoid

Ex={y|(y-x)THy(y —x) <1} ={y |y —xlu, <1}

Points in Ex are feasible!!!

(v —x)THy(y — x)

Dilkin Ellipsoid

Ex={y|(y-x)THy(y —x) <1} ={y |y —xlu, <1}

Points in Ex are feasible!!!

(v —x)THy(y —x) = (¥ = x)TATD2A(y - x)

Dilkin Ellipsoid

Ex={y|(y-x)THy(y —x) <1} ={y |y —xlu, <1}

Points in Ex are feasible!!!

(v —x)THy(y —x) = (¥ = x)TATD2A(y - x)

Zo(af (v —x))?
si(x)?

i=1

Dilkin Ellipsoid

Ex={y|(y-x)THx(y —x) <1} ={y | ly — x|y, <1}

Points in Ex are feasible!!!

(v —x)THy(y —x) = (v —x)TATD2A(y - x)

m

(al (y —x))?
si(x)?

I
Ng

-
Il
—

(change of distance to i-th constraint going from x to y)?2

Il
Mz

-
I
—_

(distance of x to i-th constraint)2

Dilkin Ellipsoid

Ex={y|(y-x)THx(y —x) <1} ={y | ly — x|y, <1}

Points in Ex are feasible!!!

(v —x)THy(y —x) = (v —x)TATD2A(y - x)

m

(al (y —x))?
si(x)?

I
Ng

-
Il
—

(change of distance to i-th constraint going from x to y)?2

Il
M=

(distance of x to i-th constraint)2

—_

IA
— 5

Dilkin Ellipsoid

Ex={y|(y-x)THx(y —x) <1} ={y | ly — x|y, <1}

Points in Ex are feasible!!!

(v —x)THy(y —x) = (v —x)TATD2A(y - x)

m

(al (y —x))?
si(x)?

I
Ng

-
Il
—

(change of distance to i-th constraint going from x to y)?2

Il
M=

(distance of x to i-th constraint)2

—_

IA
— 5

In order to become infeasible when going from x to one of the
terms in the sum would need to be larger than 1.

Dilkin Ellipsoids

AN

b
/

|

=T

F v

m EADS Il 10 Karmarkars Algorithm
©Harald Racke

Analytic Center

Xac i= argmin,.cp. $(x)

> Xac is solution to

LS|
Vo(x)=> ——a;=0
o silx)

» depends on the description of the polytope

> Xac exists and is unique iff P° is nonempty and bounded

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

‘m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = oo: optimum solution

x*(t) exists and is unique for all t > 0.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

primal-dual pair:

— max -blz
min ¢ x T
st. A'z+c=0
s.t. Ax <b
z=>0

we assume primal and dual problems are strictly feasible;
rank(A) = n.

Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means

tc+Z

- a; x*(t)

Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means

tc + Z —a poryrs

or
1

()a; =0 with z(t) =
c+ Zzi (H)a; =0 with z}(t) (= T)

Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means

tc + Z —a poryrs

or
1

t(b; —alx*(t))

m
c+ > zF(t)a; =0 with zf (1) =

» z[(t) is strictly dual feasible

Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means

tc + Z —a poryrs

or
1

()a; =0 with z(t) =
c+ Zzi (H)a; =0 with z}(t) (= T)

» z[(t) is strictly dual feasible
» duality gap between x := x*(t) and z := z*(t) is

cIx+bTz=(-Ax)Tz= %

Point x* (t) on central path is solution to tc + V¢ (x) = 0 (force
field interpretation).

This means
tc + —_—
Z - a; x*(t)

or
1

t(b; —alx*(t))

m
c+ > zF(t)a; =0 with zf (1) =
i=1
» z[(t) is strictly dual feasible
» duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(b-Ax)Tz= %

» if this gap is less than 1/Q(2") we can snap to an optimum
point

)

1T L

/
=

Path-following Methods

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function
4 recenter to return to central path

Questions/Remarks
» how do we get to analytic center?

» when is solution “good enough”?

v

(usually) improvement step tries to stay feasible, how?
» recentering step should

> be fast
» not undo (too much of) improvement

Centering Problem

minimize f;(x) = tcTx + ¢p(x)

minimizing this gives point x*(t) on central path

Newton Step at x € P°
~H 'V fi(x)

—~H Y (tc + Vp(x))
= —(ATD2A) Y(tc + ATdy)

AXnt

Newton Iteration:
X =X+ AXnt

Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= [[AxnellHy

Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= llAxnellHy

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

=A¢(x)? = V()T Axpe

Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= llAxnellHy

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

=A¢(x)? = V()T Axpe

» Ar(x) =0 iff x = x*(t)

» A¢(x) is measure of proximity of x to x™(t)

Convergence of Newtons Method

Theorem 55
If A (x) <1 then

> X4 =X+ Axpy € P° (new point feasible)
> Ar(xy) < Ag(x)?

This means we have quadratic convergence. Very fast.

feasibility:
> Ai(x) = [|[Axntll < 1; hence x lies in the Dilkin ellipsoid
around x.

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

Ar(xh)?

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

At(xT)? = DL AAX 12

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

Ar(x*)? = IDL AAx |12
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

At(xT)? = |IDLAAXEI?
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2
= |[(I - D;'D)DAAXn|I?

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

At(x)% = Dy AAX I
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2
= |(I - D;'D)DAAX|1?

To see the last equality

la®ll + lla +Db|°

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

Ar(x*)? = IDL AAx |12
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2
= |(I - D;'D)DAAX|1?

To see the last equality

la%|l + la+bll2=aa+ @’ +bT)(a+Db)

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dx+)

At(xT)? = |IDLAAXEI?
< ID+AAXLII? + ID AAX + (I — DI'D)DAAX |2
= |[(I - D;'D)DAAXn|I?

To see the last equality

% +lla+bl?=a"a+ (a” +DbT)(a+b)
=@’ +bNHa+aT(a+b)+b"b =|b|?

if al (a + b) = 0.

DAAXnt

+ _ X)
X
DAAXn = DA(

DAAxn = DA(x' — x)
=D(b-Ax — (b - Ax"))

DAAxn = DA(x' — x)
=D - Ax — (b — Ax™"))
=DMD 1T+ D)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

a’(
a+b)

D
A
A
X
nt =
DA(
=D -
=D o X)
= (D_ X
- DII , =
IID)D_II) Ax™t)
I)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy)

a

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy)

a

= Axd (ATD2 AAXG, — ATD2AAxn + ATD DAAX)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy)

a

= Axd (ATD2 AAXG, — ATD2AAxn + ATD DAAX)
= Axd (HyAxgy — HAxnpe + ATD, T - ATDT)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy)

a

= Axd (ATD2 AAXG, — ATD2AAxn + ATD DAAX)
= Axd (HyAxgy — HAxnpe + ATD, T - ATDT)
= Axpl (= Vi (x¥) + Vfi(x) + ATD, T — ATDT)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= AxaATD, (D4 AAx + (I - DT'D)DAAXy)

a

= Axd (ATD2 AAXG, — ATD2AAxn + ATD DAAX)
= Axd (HyAxgy — HAxnpe + ATD, T - ATDT)

= Axpl (= Vi (x¥) + Vfi(x) + ATD, T — ATDT)

-0

DAAXnt

+ _ X)
X
DAAXn = DA(

DAAxn = DA(x' — x)
=D(b-Ax — (b - Ax"))

DAAxn = DA(x' — x)
=D - Ax — (b — Ax™"))
=DMD 1T+ D)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

D
A
A
X
nt =
DA(
=D -
=D o X)
= (D_ X
- DII , =
IID)D_II) Ax™t)
I)

a’(
a+b)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= Ax T ATD VW (VWD Al + (I = DTD)VWDAAX)

a

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= Ax T ATD VW (VWD Al + (I = DTD)VWDAAX)

a

= Axid (ATD WD, AAxg; — ATDWDAAXq + ATD, WDAAX)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= Ax T ATD VW (VWD Al + (I = DTD)VWDAAX)

a

= Axid (ATD WD, AAxg; — ATDWDAAXq + ATD, WDAAX)
= Axd (HyAxgy — HAxne + ATD.WT - ATDWT)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= Ax T ATD VW (VWD Al + (I = DTD)VWDAAX)

a

= Axid (ATD WD, AAxg; — ATDWDAAXq + ATD, WDAAX)
= Axd (HyAxgy — HAxne + ATD.WT - ATDWT)
= Axpd (= Vi (x) + Vfi(x) + ATD,WT - ATDWT)

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D 'T+D ')
= (I -D:'D)T

Ta+b)

= Ax T ATD VW (VWD Al + (I = DTD)VWDAAX)

a

= Axid (ATD WD, AAxg; — ATDWDAAXq + ATD, WDAAX)
= Axd (HyAxgy — HAxne + ATD.WT - ATDWT)

= Axpd (= Vi (x) + Vfi(x) + ATD,WT - ATDWT)

=0

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L II?
< ID+AAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= |(I - DY'D)DAAXn 1

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L II?
< ID+AAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D;'D)DAAXI?
= | - DY'D)?1?

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L II?
< ID+AAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D;'D)DAAXI?
= (I - Dy'D)*1|?
<lU-DI'D)I|*

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L II?
< ID+AAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D;'D)DAAXI?
= (I - Dy'D)*1|?
<lU-DI'D)I|*
= [[DAAXQ|I*

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L II?
< ID+AAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D;'D)DAAXI?
= (I - Dy'D)*1|?
<lU-DI'D)I|*
= [[DAAXQ|I*
= Ar(x)?

The second inequality follows from > ; v < (21-3/1-2)2

Short step barrier method

simplifying assumptions:
» a first central point x*(tg) is given
» x*(t) is computed exactly in each iteration

€ is approximation we are aiming for

start at t = tg, repeat until m/t <e
» compute x*(ut) using Newton starting from x* (t)
> = ut

where y=1+1/(2ym)

gradient of f;+ at (x = x*(t))

Vfi+(x) = Vfir(x) + (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Ap+(x)?

gradient of f;+ at (x = x*(t))

Vi (x) = Vfi(x)+ (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Ar+ (x)? = (Vfr= (x0) TH'V fi+ ()

gradient of f;+ at (x = x*(t))

Vft+(x) = Vfi(x)+ (u—-1)t

= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Avr ()% = (Vfer (X)) THT'V fie (x)
= (u-1)?1"B(BTB)"'BT1

C

gradient of f;+ at (x = x*(t))

Vi (x) = Vfi(x)+ (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Avr ()% = (Vs (X)) TH™'V fi+ (x)
= (u-121TB(BTB)"'BTT B =D.A
<(u-1)°m

gradient of f;+ at (x = x*(t))
Vi (x) = Vfi(x) + (u—1tc
= —(u—1ATD,T

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is
A+ (%)% = (Ve (X)) THIV fi+ (x)
= (u-1°21TB(BTB)"'BTT B =D.A
<(u-1)°m
=1/4

This means we are in the range of quadratic convergence!!!

Number of Iterations

the number of Newton iterations per outer iteration is very
small; in practise only 1 or 2

Number of outer iterations:
We need ty = uXto = m/e. This holds when

_ log(m/(eto))
log(u)

We get a bound of
O(\/mlogﬂ>
€lp

We show how to get a starting point with to = 1/2L. Together
with € ~ 2L we get O(L./m) iterations.

‘m EADS Il 10 Karmarkars Algorithm =
©Harald Racke

How to start...

a damped Newton iteration goes in the direction of Axy but
only so far as to not leave the polytope,;

m EADS Il 10 Karmarkars Algorithm =)
©Harald Racke

How to start...

a damped Newton iteration goes in the direction of Axy but
only so far as to not leave the polytope,;

Lemma 56 (without proof)

A damped Newton iteration starting at xo reaches a point with
At(x) < 6 after

St (x0) —min,, fi(y)
0.09

+ O(loglog(1/9))

iterations.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to start...

a damped Newton iteration goes in the direction of Axy but
only so far as to not leave the polytope,;

Lemma 56 (without proof)
A damped Newton iteration starting at xo reaches a point with
At(x) < 6 after

St (x0) —min,, fi(y)

0.09 + O(loglog(1/9))

iterations.

This will allow us to quickly reach a point on the central path

(t ~ 2L) when starting very close to it (e.g. at the analytic center).

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x(a feasible
point.

m EADS Il 10 Karmarkars Algorithm =) =
©Harald Racke

How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x(a feasible
point.

We change b — b + % -1, where L = L(A, b) (encoding length)
and A = 22L. Recall that a basis is feasible in the old LP iff it is
feasible in the new LP.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x(a feasible
point.

We change b — b + % -1, where L = L(A, b) (encoding length)
and A = 22l Recall that a basis is feasible in the old LP iff it is
feasible in the new LP.

After, re-normalizing A and b (for integrality) we have that the
point x is at distance at least 1 from every constraint.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x(a feasible
point.

We change b — b + % -1, where L = L(A, b) (encoding length)
and A = 2°L, Recall that a basis is feasible in the old LP iff it is
feasible in the new LP.

After, re-normalizing A and b (for integrality) we have that the
point x is at distance at least 1 from every constraint.

The determinant of the matrix A for a basis B went up by a
factor of 22nL,

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to reach the analytic center?
Start at xop.

‘m EADS Il 10 Karmarkars Algorithm
©Harald Racke

How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).

m EADS I 10 Karmarkars Algorithm
©Harald Racke

How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).

xo = x*(1) is point on central path for ¢’ and t = 1.

m EADS I 10 Karmarkars Algorithm
©Harald Racke

How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).
xo = x*(1) is point on central path for ¢’ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/2"L. This requires /mnL outer iterations.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).
xo = x*(1) is point on central path for ¢’ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/2"L. This requires /mnL outer iterations.

Let x.- denote this point.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

How to reach the analytic center?
Start at xop.

Choose ¢’ := —=V¢(x).
xo = x*(1) is point on central path for ¢’ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/2"L. This requires /mnL outer iterations.

Let x. denote this point.
Let x. denote the point that minimizes
t-cTx+ ¢p(x)

(i.e., same value for t but different ¢, hence, different central
path).

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

t-clxe + p(xe)

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm

t-clxs+p(xe) <t-clxe+Pp(xe) +t-¢Txe

T

EADS Il 10 Karmarkars Algorithm
©Harald Racke

t-clxs+p(xe) <t-cTxe+dp(xe) +t-

<t-clxe+p(xe)+t-¢

T

EADS Il 10 Karmarkars Algorithm
©Harald Racke

t-clxs+p(xe) <t-cTxe+dp(xe) +t-

<t-cTxe+p(xe) +t-

st-chC+¢>(xc)+t-

10 Karmarkars Algorithm

éTx
T

o>

Xc

é
(ch@ + éTxc)

T

EADS Il
©Harald Racke

t-clxe + Pplxe) <

=<

IA

IA

t
t

Tx

o>

cclxe+ p(xe) +t-

o>

TXC

ccTxe+p(xe)+t-¢
ceTx, + b(xe)+t- (ch@ + éTxc)

ccTxe + pxe) + 2t2(cmad pnl

T

EADS Il
©Harald Racke

10 Karmarkars Algorithm &

Tx

Txc

o>

t-clxs+p(xe) <t-cTxe+dp(xe) +t-

[oNY

(o}

<t-cTxe+p(xe) +t-
<t-cTx.+ b(xe)+t- (ch@ + éTxc)

<t-cTxe+ Pplxe) + 2t2{max) nk

Choosing t = 1/22L)) gijves that the last term becomes very
small. Hence, using damped Newton we can move to a point on
the new central path (for c¢) quickly.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Tx

Txc

o>

t-clxs+p(xe) <t-cTxe+dp(xe) +t-

[oNY

(o}

<t-cTxe+p(xe) +t-
<t-cTx.+ b(xe)+t- (ch@ + éTxc)

<t-cTxc+ plxc) + 2t2fcmad) pnk

Choosing t = 1/22L)) gijves that the last term becomes very
small. Hence, using damped Newton we can move to a point on
the new central path (for c¢) quickly.

In total for this analysis we require @ (,/mnL) outer iterations
for the whole algorithm.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Tx

Txc

o>

t-clxs+p(xe) <t-cTxe+dp(xe) +t-
<t-cTxe+p(xe) +t-

[oNY

(o}

<t-cTx.+ b(xe)+t- (ch@ + 6Txc)

<t-cTxc+ plxc) + 2t2fcmad) pnk

Choosing t = 1/22L)) gijves that the last term becomes very
small. Hence, using damped Newton we can move to a point on
the new central path (for c¢) quickly.

In total for this analysis we require @ (,/mnL) outer iterations
for the whole algorithm.

One interation can be implemented in O (m3) time.

‘m EADS Il 10 Karmarkars Algorithm = =
©Harald Racke

Part Il

Approximation Algorithms

.
‘m EADS Il
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

m EADS Il 11 Introduction =) =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?

‘m EADS Il 11 Introduction =) =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

‘m EADS Il 11 Introduction =) =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

» Exploit special structure of instances occurring in practise.

‘m EADS Il 11 Introduction =] =
©Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.
» Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.

‘m EADS Il 11 Introduction =] =
©Harald Racke

Definition 57

An x-approximation for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of « of the

value of an optimal solution.

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

m EADS Il 11 Introduction
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

‘m EADS Il 11 Introduction
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

‘m EADS Il 11 Introduction
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying
heuristics.

» It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

‘m EADS Il 11 Introduction =]
©Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

» It gives a rigorous mathematical base for studying
heuristics.

» |t provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?
» Sometimes the results are very pessimistic due to the fact
that an algorithm has to provide a close-to-optimum
solution on every instance.

m EADS Il 11 Introduction
©Harald Racke

Definition 58
An optimization problem P = (7, sol, m, goal) is in NPO if

» x €7 can be decided in polynomial time

v

v € sol(7) can be verified in polynomial time

» m can be computed in polynomial time

v

goal € {min, max}

In other words: the decision problem is there a solution y with
m(x,y) at most/at least z is in NP.

‘m EADS Il 11 Introduction =] =
©Harald Racke

> x is problem instance
» v is candidate solution

» m*(x) cost/profit of an optimal solution

Definition 59 (Performance Ratio)

m(x,y) m*(x)

R,y = maxj(m*(x) ' m(x,y)

|

m EADS Il 11 Introduction
©Harald Racke

Definition 60 (r-approximation)
An algorithm A is an r-approximation algorithm iff

Vx el:R(x,Ax)) <1,

and A runs in polynomial time.

m EADS Il 11 Introduction
©Harald Racke

Definition 61 (PTAS)
A PTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x]|.

approximation with arbitrary good factor... fast?

‘m EADS Il 11 Introduction =]
©Harald Racke

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule
the jobs on n machines such that the MAKESPAN is minimized.

‘m EADS Il 11 Introduction =]
©Harald Racke

Definition 62 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes
as input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x| and 1/€.

approximation with arbitrary good factor... fast!

‘m EADS Il 11 Introduction
©Harald Racke

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
subset of total weight at most W s.t. the profit is maximized.

‘m EADS Il 11 Introduction =]
©Harald Racke

Definition 63 (APX - approximable)
A problem P from NPO is in APX if there exist a constant v > 1
and an r-approximation algorithm for P.

constant factor approximation...

‘m EADS Il 11 Introduction =)
©Harald Racke

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint
pieces A and B s.t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the
variables that satisfies the maximum number of clauses.

‘m EADS Il 11 Introduction =]
©Harald Racke

Problems with polylogarithmic approximation guarantees
» Set Cover

» Minimum Multicut
» Sparsest Cut

» Minimum Bisection

There is an r-approximation with » < ©(log®(|x|)) for some
constant c.

Note that only for some of the above problem a matching lower
bound is known.

‘m EADS Il 11 Introduction =] =
©Harald Racke

There are really difficult problems!

m EADS Il 11 Introduction
©Harald Racke

There are really difficult problems!

Theorem 64

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

‘m EADS Il 11 Introduction =]
©Harald Racke

There are really difficult problems!

Theorem 64

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

‘m EADS Il 11 Introduction =]
©Harald Racke

There are weird problems!
Asymmetric k-Center admits an @ (log™ n)-approximation.

There is no o(log™ n)-approximation to Asymmetric k-Center
unless NP ¢ DTIME (nlogloglogn)

‘m EADS Il 11 Introduction =]
©Harald Racke

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P
admits a 4-approximation.

One only says that a problem is APX-hard.

‘m EADS Il 11 Introduction
©Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

‘m EADS Il 12 Integer Programs = =
©Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for
maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a
vital role in the design of many approximation algorithms.

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Definition 65
An Integer Linear Program or Integer Program is a Linear
Program in which all variables are required to be integral.

m EADS I 12 Integer Programs
©Harald Racke

Definition 65
An Integer Linear Program or Integer Program is a Linear
Program in which all variables are required to be integral.

Definition 66
A Mixed Integer Program is a Linear Program in which a subset
of the variables are required to be integral.

‘m EADS Il 12 Integer Programs =)
©Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

‘m EADS Il 12 Integer Programs =)
©Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is
NP-complete!

‘m EADS Il 12 Integer Programs =
©Harald Racke

Set Cover

Given a ground set U, a collection of subsets Sy,...,Sy € U,
where the i-th subset S; has weight/cost w;. Find a collection
I<{1,...,k} such that

YueU3diel: ues; (every element is covered)

and
Z w; is minimized.
iel

‘m EADS Il 12 Integer Programs =)
©Harald Racke

Set Cover

T

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

[T

. .
. 0
oo .) .)
. oo .
.)
. .
K 0 . .
o‘o oo
3 o o o o
0 .
o o o . .
. .
. 0
. .
. eele oo
oo 0
.)
0 .
0
o o o o oo
. .
EADS Il 12 Integer Programs =

©Harald Racke

Set Cover

T

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

L)
L] L] L]
(] . L] . L]
L) L]
. (] o0
LN] .
L))
.
L L] L]
o0 (]
L] L] L]
L]
L] L]
L] L]
(] .
L] L]
L] LN) e
. o0
LR N] L]
L] LN]
L] L[]
L] L]
(] (]
L] L] L] L] L] L]
LN L] L]

T

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

. .
.)
) . .
. o o
. .
.) .
L] L] L]
) .
o o .
. . o o
oo . .
. . . .
. . . .
o o o
. . .
) . o o
. . . .
. . eee)
o eee . oo .
eee . .
)) .
.) .) eee
. . o o o o
. .) . .
. . o o o o o o .
oo o o oo . .
EADS Il 12 Integer Programs =] E

©Harald Racke

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il

©Harald Racke

12 Integer Programs

@ <

Set Cover

EADS Il

©Harald Racke

12 Integer Programs

@ <

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

Set Cover

EADS Il
©Harald Racke

12 Integer Programs

IP-Formulation of Set Cover

min > WiXg
s.t. VueuU Xiyes Xi
Vie{l,...,k} Xi
Vie{l,...,k} Xi

=
=

integral

m EADS I 12 Integer Programs
©Harald Racke

Vertex Cover

Given a graph G = (V, E) and a weight w, for every node. Find a
vertex subset S < V of minimum weight such that every edge is
incident to at least one vertex in S.

‘m EADS Il 12 Integer Programs = =
©Harald Racke

IP-Formulation of Vertex Cover

min Dvev WuXy
st. Ve=(i,j) €E Xi+ Xj
Vv evVv Xy

> 1
e {0,1}

m EADS I 12 Integer Programs
©Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex
is incident to more than one edge.

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.

Find a subset of edges of maximum weight such that no vertex
is incident to more than one edge.

max D ecE WeXe
st. YVveV DiceXe =< 1
Ve e E x. € {0,1}

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

‘m EADS Il 12 Integer Programs =) =
©Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.

Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

max > vey WyXy
s.t. Ve=(i,j)€E xi+x; =< 1

‘m EADS Il 12 Integer Programs = =
©Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight
wj and profit p;, and given a threshold K. Find a subset

I <{1,...,n} of items of total weight at most K such that the
profit is maximized.

‘m EADS Il 12 Integer Programs =
©Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight
wj and profit p;, and given a threshold K. Find a subset

I <{1,...,n} of items of total weight at most K such that the
profit is maximized.

max L1pixi
s.t. Stiwixi < K
Vie{l,...,n} x; € {0,1}

‘m EADS Il 12 Integer Programs =
©Harald Racke

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if
any feasible solution for IP is also feasible for LP and if the
objective values of these solutions are identical in both
programs.

‘m EADS Il 12 Integer Programs =
©Harald Racke

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if
any feasible solution for IP is also feasible for LP and if the
objective values of these solutions are identical in both

programs.

We obtain a relaxation for all examples by writing x; € [0, 1]
instead of x; € {0, 1}.

‘m EADS Il 12 Integer Programs =
©Harald Racke

By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization
problem.

‘m EADS Il 12 Integer Programs =
©Harald Racke

Relations

Maximization Problems:

| OPT(DUAL) |

| FEASIBLE(DUAL) |

X

Minimization Problems:

‘FEASIBLE(DUAL) \ \ OPT(DUAL) \

00

‘m EADS Il 12 Integer Programs
©Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

‘m EADS Il 13.1 Deterministic Rounding =) =
©Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zé‘:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zif:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {fy,} be the maximum
frequency.

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.

m EADS Il 13.1 Deterministic Rounding =)
©Harald Racke

Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

‘m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.

‘m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
» We know that >, cg x; = 1.

» The sum contains at most f;, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

v

We know that >, cq, x; = 1.

v

The sum contains at most f;, < f elements.

v

v

This set will be selected. Hence, u is covered.

Therefore one of the sets that contain u must have x; > 1/f.

‘m EADS Il 13.1 Deterministic Rounding = =
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

D wi

iel

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

iel i=1
= f - cost(x)

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi < > wilf - xq)

icl i=1
= f - cost(x)
<f-OPT.

m EADS Il 13.1 Deterministic Rounding
©Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:uESi x;i=1
x;i =0

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2ueU Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
x;i =0 YVu = 0
13.2 Rounding the Dual a =

©Harald Racke

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;

‘m EADS Il 13.2 Rounding the Dual =) =
©Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

m EADS II 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.
Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.
Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

‘m EADS Il 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.

» This means >, cs, Yu < w; for all sets S; that contain u.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.

‘m EADS Il 13.2 Rounding the Dual = =
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

iel

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;

=>iel:uesS} yu
u

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel uues;

=>iel:uesS} yu
u

= quyu

m EADS I 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS} yu
u
Squyu
u

Sfzyu

m EADS II 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel uues;
=>iel:uesS} yu
u
Squyu
u
Sfzyu
u

< fcost(x™*)

m EADS II 13.2 Rounding the Dual
©Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel uues;
=>Hiel:ueSi} - yu
u
= quyu
m
= fzyu
u

< fcost(x™*)
< f-OPT

m EADS II 13.2 Rounding the Dual
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

‘m EADS Il 13.2 Rounding the Dual
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second

algorithm. Then
Icr .

This means I’ is never better than I.

» Suppose that we take Sj in the first algorithm. l.e., i € I.

» This means x; > %
» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

v

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

Suppose that we take S; in the first algorithm. l.e., i € I.

‘m EADS Il 13.2 Rounding the Dual =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

‘m EADS Il 13.3 Primal Dual Technique =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

‘m EADS Il 13.3 Primal Dual Technique =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

‘m EADS Il 13.3 Primal Dual Technique =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

‘m EADS Il 13.3 Primal Dual Technique = =
©Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.

‘m EADS Il 13.3 Primal Dual Technique = =
©Harald Racke

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1y <0

210

3: while exists u ¢ (J;<; S; do

4 increase dual variable y; until constraint for some
new set Sy becomes tight

I—Tu{{¥}

v

T

EADS Il 13.3 Primal Dual Technique =)
©Harald Racke

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

]

S~ §; forall j

while I not a set cover do
¢ —argmin; ., I%JI
I-1u{¥}
Sj—S;j—S; forallj

A vl AW N~

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.

‘m EADS Il 13.4 Greedy =]
©Harald Racke

Technique 4: The Greedy Algorithm

Lemma 70
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

. a; ics Ai a;
mm—l<72165 ! < max -

i bi Xiesbi i by

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wy
min —
J 185

‘m EADS Il 13.4 Greedy =) =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W W
min 1 < 2.jeoPT vj
i 1851 Xjeort 1)l

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi 2jeopT W) OPT
min . < = <
i 181 Xjeort ISj1 Xjcopr IS

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT

min —— < o <
i 1S5l Z.jGOPT|Sj| zjeopT|Sj| Ny

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT
min —— < o <
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —% < J -
i 1S5l szOPT|Sj| zjeopT|Sj| Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT

m EADS Il 13.4 Greedy =] =
©Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§j|.

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — |§’j|.

B IS;IOPT nyp—ny,,
oy ng

- OPT

wj

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

D wj

Jjel

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

S
ny —n
ijg TR opT
jeI {=1

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

=H, - OPT < OPT(Inn +1) .

m EADS Il 13.4 Greedy
©Harald Racke

Technique 4: The Greedy Algorithm

A tight example:

m EADS Il 13.4 Greedy &
©Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

[T

EADS Il
©Harald Racke

13.5 Randomized Rounding

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[(1-xj)

j:’I/LESj

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=[] Q=-xp) =< [] e

j:’I/LESj j:‘uESj

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e* Zj:uGSj Xj

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:‘uESj

_ e*Zj:ueijj < 671

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[(1-xj) < 1_[e Xi

j:uESj j:ueSj

_ e*Zj:uEijj < 671 .

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0

‘m EADS Il 13.5 Randomized Rounding
©Harald Racke

[T

EADS Il
©Harald Racke

13.5 Randomized Rounding

Pr[3u € U not covered after £ round]

m EADS II 13.5 Randomized Rounding
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]

m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u» not covered Vv

< ZPr[ui not covered after € rounds]
i

...V Uy not covered]

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V uy not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 71
With high probability O (logn) rounds suffice.

m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 71
With high probability O (logn) rounds suffice.

With high probability:
For any constant & the number of rounds is at most O(logn)
with probability at least 1 — n~«.

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

Proof: We have

Pr[#rounds > (« + 1) Inn] < ne-(@rinn —

n—O(

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Expected Cost

> Version A.
Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost]

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~«

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

‘m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

‘m EADS Il 13.5 Randomized Rounding =) =
©Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1
< mlz‘[cost] < m((x +1)Inn - cost(LP)

T

EADS I 13.5 Randomized Rounding & =
©Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ(+ 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

T

EADS Il 13.5 Randomized Rounding & =
©Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= é(]i[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< mE[COSt] < m(ﬂ(+ 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

form=2and x> 1.

T

EADS I 13.5 Randomized Rounding & =
©Harald Racke

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

‘m EADS Il 13.5 Randomized Rounding =)
©Harald Racke

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 72 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
2poly(logn))_

‘m EADS Il 13.5 Randomized Rounding = =
©Harald Racke

Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

v

n=2k_-1
Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

Sy =1{x|xTy =1}

each set contains 2¥~1 vectors; each vector is contained in

T

2k=1 sets
1 2 . . .
> Xi = kT = 41 is fractional solution.
EADS Il 13.5 Randomized Rounding =) = =

©Harald Racke

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).

m EADS Il 13.5 Randomized Rounding
©Harald Racke

Techniques:

>

>

>

Deterministic Rounding
Rounding of the Dual
Primal Dual

Greedy

Randomized Rounding
Local Search

Rounding Data + Dynamic Programming

T

EADS Il 13.5 Randomized Rounding
©Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =) =
©Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi X;pj-xj; < L
Vjobs j >ixji=1
Vi, j xji € {0,1}

Here the variable x; ; is the decision variable that describes
whether job j is assigned to machine 1i.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

m EADS Il 14 Scheduling on Identical Machines: Local Search =) =
©Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

Clearly
3
Chax = mjax P

as the longest job needs to be scheduled somewhere.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % Zj pj.

m EADS I 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2.jiPj-

Therefore, .
Cl‘T‘laX = % %: pj

m EADS II 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Local Search

©Harald Racke

14 Scheduling on Identical Machines: Local Search

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not
find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search for Scheduling

m EADS I 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

REPEAT

‘m EADS Il 14 Scheduling on Identical Machines: Local Search = =
©Harald Racke

Local Search Analysis

m EADS I 14 Scheduling on Identical Machines: Local Search
©Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

Let Sy be its start time, and let Cy be its completion time.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.
Let Sy be its start time, and let Cy be its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule

would not be locally optimal.

‘m EADS Il 14 Scheduling on Identical Machines: Local Search
©Harald Racke

[T

EADS Il
©Harald Racke

14 Scheduling on Identical Machines: Local Search

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

m EADS I 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

‘m EADS I 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
pe+— 2. pj
m “

j#l

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

w+EZv]=(1——)m+vaJ
j#l

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

We can split the total processing time into two intervals one
from O to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
W+*Zv1=(1—*)ve+*2v1 (2 = —) Cinax
mj#{) m

‘m EADS Il 14 Scheduling on Identical Machines: Local Search =
©Harald Racke

A Tight Example

Se
pemSet T
ALG _Sp+pr 2Fmi _, L
OPT Py 1+ -1 m

m-1

A Greedy Strategy

m EADS I 15 Scheduling on Identical Machines: Greedy
©Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill
the local optimally condition of our local search algorithm.
Hence, these also give 2-approximations.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

Proof:

> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =)
©Harald Racke

Proof:
> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

Proof:

> Let p; > - - - = p, denote the processing times of a set of

jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

» If py < Ch.x/3 the previous analysis gives us a schedule
length of at most

4
Chax +Pn < =Clax -

3

T

EADS 1l

15 Scheduling on Identical Machines: Greedy
©Harald Racke

Proof:
> Let p; = - - - = p,, denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

» If py < Ch.x/3 the previous analysis gives us a schedule
length of at most

4
CI?I&X + Pn =< §CI>'I<1aX .
Hence, pyn > Ch.x/3.

» This means that all jobs must have a processing time
> Chax/3-

T

EADS Il

15 Scheduling on Identical Machines: Greedy
©Harald Racke

Proof:

> Let p; = - - - = p,, denote the processing times of a set of

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
Chax +Pn < =Clax -

3
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle
at most two jobs.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

Proof:

> Let p; = - - - = p,, denote the processing times of a set of

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
Cfrklax + Pn =< §CI>'I<18.X .
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle
at most two jobs.

For such instances Longest-Processing-Time-First is optimal.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

When in an optimal solution a machine can have at most 2 jobs
the optimal solution looks as follows.

P14 P13 pi2 P11 P10 P9 P38

P1 p2 pP3 P4 Ps Pe6 p7

‘m EADS Il 15 Scheduling on Identical Machines: Greedy = =
©Harald Racke

» We can assume that one machine schedules p; and p,, (the
largest and smallest job).

T

EADS Il 15 Scheduling on Identical Machines: Greedy & =
©Harald Racke

» We can assume that one machine schedules p; and p,, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

T

EADS I

15 Scheduling on Identical Machines: Greedy
©Harald Racke

» We can assume that one machine schedules p; and p, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =)
©Harald Racke

» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and py, on one machine and p4 and pp on the other,
cannot increase the Makespan.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let p4 and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and py, on one machine and p4 and pp on the other,
cannot increase the Makespan.

» Repeat the above argument for the remaining machines.

T

EADS Il 15 Scheduling on Identical Machines: Greedy =) =
©Harald Racke

Tight Example

» 2m + 1 jobs

©Harald Racke

15 Scheduling on Identical Machines: Greedy

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Tight Example

» 2m + 1 jobs

» 2 jobs with length 2m,2m — 1,2m — 2,
jobs in total)

» 3 jobs of length m

oom+10@2m-—2

‘m EADS II 15 Scheduling on Identical Machines: Greedy =

©Harald Racke

Traveling Salesman

Given a set of cities ({1,...,7}) and a symmetric matrix

C = (cij), cij = 0 that specifies for every pair (i, j) € [n] x [n]
the cost for travelling from city i to city j. Find a permutation 1t
of the cities such that the round-trip cost

n-1

Cn()m(n) + z Crr(i)m(i+1)
i=1

is minimized.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 74
There does not exist an O (2™)-approximation algorithm for TSP.

‘m\ EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 74
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman
Theorem 74

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman
Theorem 74

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;j to n2" otw. set ¢;j to 1. This
instance has polynomial size.

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman

Theorem 74

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

m EADS Il 16 TSP & =
©Harald Racke

Traveling Salesman
Theorem 74

There does not exist an O (2")-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for
TSP.

» If (i,) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

» There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than 2".

» An O(2")-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.

m EADS Il 16 TSP & =
©Harald Racke

Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

©Harald Racke

Metric Traveling Salesman

In the metric version we assume for every triple
i,j,ke{l,...,n}
Cij = Cjj + Cjk -

It is convenient to view the input as a complete undirected graph
G = (V,E), where ¢;; for an edge (i, j) defines the distance
between nodes i and j.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

‘m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Lower Bound |

Lemma 75

The cost OPT1sp(G) of an optimum traveling salesman tour is at
least as large as the weight OPTys1(G) of a minimum spanning
tree in G.

Proof:

» Take the optimum TSP-tour.
» Delete one edge.

» This gives a spanning tree of cost at most OPTsp(G).

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

‘m\ EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

» Start with a tour on a subset S containing a single node.

» Take the node v closest to S. Add it S and expand the
existing tour on S to include v.

» Repeat until all nodes have been processed.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
‘m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

.
m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

G

.
m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

® ®@
@)
\}.

.
m EADS Il
©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

® ®
.
66

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@

©Harald Racke

16 TSP

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

@ ® @

©Harald Racke

TSP: Greedy Algorithm

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

@

©Harald Racke

TSP: Greedy Algorithm

©Harald Racke

TSP: Greedy Algorithm

©Harald Racke

TSP: Greedy Algorithm

The gray edges form an MST, because exactly these edges are
taken in Prims algorithm.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

©Harald Racke

TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € Sj.

m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

Lemma 76
The Greedy algorithm is a 2-approximation algorithm.

Let S; be the set at the start of the i-th iteration, and let v;
denote the node added during the iteration.

Further let s; € S; be the node closest to v; € S;.

Let 7; denote the successor of s; in the tour before inserting v;.

We replace the edge (s;,7;) in the tour by the two edges (s;, v;)
and (Ui,Tl').

This increases the cost by

Csi,vg T Cuyry = Copry = ZCSi,Ui

m EADS Il 16 TSP & =
©Harald Racke

TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: Greedy Algorithm

The edges (s;, Vi) considered during the Greedy algorithm are
exactly the edges considered during PRIMs MST algorithm.

Hence,
> Csivi = OPTusT(G)

1

which with the previous lower bound gives a 2-approximation.

m EADS Il 16 TSP & =
©Harald Racke

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

‘M\ EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

‘m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach
Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of

G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

» Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

m EADS Il 16 TSP & =
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c(e)

ecE’

> Find an Euler tour of G'.

» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour
because of triangle inequality.

m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

Suppose that we are given an Eulerian graph G’ = (V,E’,¢’) of
G = (V,E,c) such that for any edge (i,j) € E' ¢'(i,j) = c(i, J).

Then we can find a TSP-tour of cost at most

> c'(e)

ecE’

> Find an Euler tour of G'.
» Fix a permutation of the cities (i.e., a TSP-tour) by traversing
the Euler tour and only note the first occurrence of a city.

» The cost of this TSP tour is at most the cost of the Euler tour

because of triangle inequality.

This technique is known as short cutting the Euler tour.

m EADS Il 16 TSP &
©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

13

QY
~

Y

14

©Harald Racke

16 TSP

TSP: A different approach

13

QY
~

Y

14

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

Q > /

10
1
>
2)

@
H
)
O

o 13
<+

©Harald Racke

16 TSP

TSP: A different approach

Q > /

10
1
>
2)

(@)
o D
O

o 13
<+

©Harald Racke

16 TSP

TSP: A different approach

C 9 :/-\]3:
10
<
. —
] o
() >
> (2)
5 D
®

©Harald Racke

TSP: A different approach

C 9 /:/-\ 1

10
(2
1 y
() &
- (2)
o)
®

3,
>
<
s

©Harald Racke

TSP: A different approach

C 9 >]3:
10
<
G —
] o
() %
> (2)
e
®

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

16 TSP

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

©Harald Racke

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

‘m EADS Il 16 TSP & =
©Harald Racke

TSP: A different approach

Consider the following graph:
» Compute an MST of G.
» Duplicate all edges.

This graph is Eulerian, and the total cost of all edges is at most
2 - OPTnsT(G).

Hence, short-cutting gives a tour of cost no more than
2 - OPTysT(G) which means we have a 2-approximation.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

@

.
©Harald Racke

16 TSP

TSP: Can we do better?

©Harald Racke

16 TSP

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

‘M\ EADS Il 16 TSP &
©Harald Racke

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.

We only need to make the graph Eulerian.

‘m EADS Il 16 TSP &
©Harald Racke

TSP: Can we do better?

Duplicating all edges in the MST seems to be rather wasteful.
We only need to make the graph Eulerian.

For this we compute a Minimum Weight Matching between odd
degree vertices in the MST (note that there are an even number
of them).

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

©Harald Racke

16 TSP

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

‘M\ EADS Il 16 TSP &
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most

However, the edges of this tour give rise to two disjoint

matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPTr1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

m EADS Il 16 TSP & =
©Harald Racke

TSP: Can we do better?

An optimal tour on the odd-degree vertices has cost at most
OPT1sp(G).

However, the edges of this tour give rise to two disjoint
matchings. One of these matchings must have weight less than
OPT1sp(G)/2.

Adding this matching to the MST gives an Eulerian graph with
edge weight at most

3
OPTwmsT(G) + OPT1sp(G) /2 < EOPTTSP(G) ,

Short cutting gives a %-approximation for metric TSP.

This is the best that is known.

m EADS Il 16 TSP & =
©Harald Racke

Christofides. Tight Example

» optimal tour: n edges.
» MST: n — 1 edges.
» weight of matching (n+1)/2 -1

» MST+matching = 3/2-n

©Harald Racke

Tree shortcutting. Tight Example

€

[T

» edges have Euclidean distance.

©Harald Racke

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a
subset I < {1,...,n} of items of total weight at most W such
that the profit is maximized (we can assume each w; < W).

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a
subset I < {1,...,n} of items of total weight at most W such
that the profit is maximized (we can assume each w; < W).

max St piXi
s.t. z?:l wix; < W
Vie{l,...,n} x; € {0,1}

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1) < [(0,0), (p1,w1)]

2: forj —2 to ndo

3 A(j) = A(G-1)

4 for each (p,w) € A(j—1) do
5 if w+wj<W then
6

7

8:

add (p + pj,w +wj) to A(j)
remove dominated pairs from A(j)
return maxy w)eam) P

The running time is O(n - min{W,P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Definition 77
An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the

input is encoded in unary.

‘m EADS Il 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.

m EADS II 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
> Set u:=€eM/n.

m EADS II 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
> Set u:=€eM/n.
» Set p;:=|pi/u] forall i.

m EADS II 17.1 Knapsack
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

‘m EADS II 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

O(nP")

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP) =0(n p})

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP') =0(n3 pj)=0(n3, [ez\?ﬁj)

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

\ 4

Let M be the maximum profit of an element.
Set u:=eM/n.

\4

v

Set p; :=|pi/u] forall i.

v

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

ompP)=0(nY pi)=0n>, [d\’;ﬁj) < 0(":) .

‘m EADS Il 17.1 Knapsack =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

m EADS Il 17.1 Knapsack =) =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS

m EADS Il 17.1 Knapsack =) =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

=H2 i

ieS

=H2 P

ieO

T

EADS Il
©Harald Racke

17.1 Knapsack & =

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

=H2 i
[ISNY
=H 2 P
i€0

> > pi—10lu
ie0

T

EADS Il
©Harald Racke

17.1 Knapsack & =

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=H 2 P
i€O
> pi—lOlu
ie0

> pi—npu
ieO

%

%

‘m EADS Il 17.1 Knapsack =) =
©Harald Racke

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

D.Piz U P
ieS €S
=H 2 P

i€0
> pi—lOlu
i€0
>, pi—np
i€0

> pi—eM
ie0

%

%

T

EADS Il
©Harald Racke

17.1 Knapsack & =

17 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS
=p D p;
i€O
> > pi—10lu
i€eO
> > pi-nu
ie0
=D pi—€eM
i€eO
> (1 -€)OPT .

‘m EADS Il 17.1 Knapsack =) =
©Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j#l

where £ is the last job to complete.

‘m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j=t

where £ is the last job to complete.

Together with the obervation that if each p; > %ngax then LPT is
optimal this gave a 4/3-approximation.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

m EADS I 17.2 Scheduling Revisited
©Harald Racke

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

pj—kmz pi

m EADS I 17.2 Scheduling Revisited
©Harald Racke

17.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job jis called short if

p]—kmz pi

Idea:

1. Find the optimum Makespan for the long jobs by brute
force.

‘m EADS I 17.2 Scheduling Revisited =
©Harald Racke

17.2 Scheduling Revisited
Partition the input into long jobs and short jobs.

A job jis called short if

p]—kmz pi

Idea:
1. Find the optimum Makespan for the long jobs by brute

force.
2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

17.2 Scheduling Revisited

©Harald Racke

We still have the inequality

1
— 2 pj+py
j=l

where £ is the last job (this only requires that all machines are
busy before time S)).

‘m EADS II 17.2 Scheduling Revisited =
©Harald Racke

We still have the inequality

1
o 2 Pit P
j=l
where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it
consists of an optimal schedule of long jobs plus a schedule for
short jobs.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

We still have the inequality

1
— 2 pj+py
j=l

where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it
consists of an optimal schedule of long jobs plus a schedule for
short jobs.

If £ is a short job its length is at most

pe <. pjl(mk)

which is at most C./k.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Hence we get a schedule of length at most

(1+ %)c;;ax

m EADS II 17.2 Scheduling Revisited
©Harald Racke

Hence we get a schedule of length at most

(1+ %)c;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on 11 machines is at most
mKk™_ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Hence we get a schedule of length at most

(1+ %)C;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mkm, which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 78

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [é].

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

How to get rid of the requirement that m is constant?

m EADS I 17.2 Scheduling Revisited
©Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

‘m EADS II 17.2 Scheduling Revisited
©Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 +)T or
certifies that no schedule of length at most T exists (assume

T>*Z]l]1)

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 +)T or
certifies that no schedule of length at most T exists (assume

T>*ijj)

We partition the jobs into long jobs and short jobs:
» Ajobis long if its size is larger than T/k.
» Otw. it is a short job.

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

» We round all long jobs down to multiples of T/k?.

T

EADS Il 17.2 Scheduling Revisited
©Harald Racke

» We round all long jobs down to multiples of T/k?.

> For these rounded sizes we first find an optimal schedule.

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» We round all long jobs down to multiples of T/k?.
> For these rounded sizes we first find an optimal schedule.

> If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

T

EADS Il 17.2 Scheduling Revisited =) =
©Harald Racke

v

We round all long jobs down to multiples of T/k2.

v

For these rounded sizes we first find an optimal schedule.

\4

If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

\4

If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.

T

EADS 1l 17.2 Scheduling Revisited =) =
©Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

‘m EADS I 17.2 Scheduling Revisited = =
©Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at

most 1
(1 n E)T .

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.

‘m EADS I 17.2 Scheduling Revisited = =
©Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that

the new load is at most

T+

=~
|

—
—
+
| =
S—
ﬂ

‘m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.

Therefore the number of different inputs is at most nk®
(described by a vector of length k? whgre, the i-th entry
describes the number of jobs of size k—lzT). This is polynomial.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k? where, the i-th entry
describes the number of jobs of size kii_,T). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There
are only (k + 1)K different vectors.

m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Running Time for scheduling large jobs: There should not be
a job with rounded size more than T as otw. the problem
becomes trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k? where, the i-th entry
describes the number of jobs of size kii_,T). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There
are only (k + 1)K different vectors.

This means there are a constant number of different machine
configurations.

m EADS Il 17.2 Scheduling Revisited
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are

required to schedule input vector (n,..
most T.

., Ng2) with Makespan at

m EADS I 17.2 Scheduling Revisited
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

‘m EADS I 17.2 Scheduling Revisited = =
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (1’l1,...,1’lk2)=0
_J 1+ min OPT(m; —5S1,...,M2 — Sg2) (M1,...,Mp2) 2 0
(81,..08,2)EC
00 otw.

where C is the set of all configurations.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

Let OPT(ny,...,n2) be the number of machines that are
required to schedule input vector (n1,...,n;2) with Makespan at
most T.

If OPT(ny,...,n,2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (1’l1,...,1’lk2)=0
_J 1+ min OPT(n;—s1,...,n2 —Sk2) (M1,...,n2) 20
(81,..08,2)EC
00 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1)K nk* ~ (nk)¥*.

‘m EADS Il 17.2 Scheduling Revisited = =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.

‘m EADS II 17.2 Scheduling Revisited =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?

‘m EADS II 17.2 Scheduling Revisited = =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

Theorem 79
There is no FPTAS for problems that are strongly NP-hard.

‘m EADS Il 17.2 Scheduling Revisited =
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

» Weset k:=[2nq(n)] = 20PT

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)
» Weset k:=[2nq(n)] = 20PT

» Then

1 1
ALG < (1 + E> OPT < OPT +;

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

» Suppose we have an instance with polynomially bounded
processing times p; < q(n)

We set k := [2ngq(n)] = 2 OPT
Then

v

v

1 1
ALG < (1 + E> OPT < OPT +;

v

But this means that the algorithm computes the optimal
solution as the optimum is integral.

T

EADS 1l 17.2 Scheduling Revisited =)
©Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n,k)) = O(poly(n))

T

EADS 1l 17.2 Scheduling Revisited =)
©Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k := [2ngq(n)] = 2 OPT

Then

1 1
ALG < (1 + E> OPT < OPT +;

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n,k)) = O(poly(n))

For strongly NP-complete problems this is not possible
unless P=NP

T

EADS Il 17.2 Scheduling Revisited =)
©Harald Racke

More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

More General
Let OPT(ny,...,n4) be the number of machines that are required to

schedule input vector (ny,...,1n,) with Makespan at most T
(A: number of different sizes).

If OPT(n1,...,n4) < m we can schedule the input.

OPT(nl,...,nA)

(ng,...,na) =0
_J)J 1+ min OPT(nj;-—s1,...,m4—54) (M1,...,m4) =0
(81,..,54)EC
otw

where C is the set of all configurations.

|C| < (B + 1)4, where B is the number of jobs that possibly can fit on

the same machine.

The running time is then O((B + 1)“n*) because the dynamic

programming table has just n4 entries.

Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

m EADS II 17.3 Bin Packing =] =
©Harald Racke

Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 80
There is no p-approximation for Bin Packing with p < 3/2 unless

P = NP.

m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

Dbi=>b; ?

ieS ieT

m EADS II 17.3 Bin Packing =] =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

Dbi=>b; ?

ieS ieT

» We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

» Hence, such an algorithm can solve Partition.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Definition 81
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for

minimization problems.

m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Definition 81
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for

minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS

because of scaling.

‘m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Definition 81
An asymptotic polynomial-time approximation scheme (APTAS)

is a family of algorithms {A¢} along with a constant ¢ such that
A returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS

because of scaling.
» However, we will develop an APTAS for Bin Packing.

‘m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of

size at most y s.t. we use only max{¥, 1}—ySIZE(I) + 1} bins,

where SIZE(I) = >.; s; is the sum of all item sizes.

m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 82

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.

‘m EADS II 17.3 Bin Packing & =
©Harald Racke

Choose y = €/2. Then we either use £ bins or at most

1
1-¢€/2

-OPT+1<(1+¢€)-0PT+1

bins.

It remains to find an algorithm for the large items.

m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.

m EADS II 17.3 Bin Packing
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

m EADS II 17.3 Bin Packing &
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;

m EADS II 17.3 Bin Packing &
©Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

T

EADS Il 17.3 Bin Packing =)
©Harald Racke

Linear Grouping

m EADS II 17.3 Bin Packing =] =
©Harald Racke

Linear Grouping

m EADS Il 17.3 Bin Packing =] =
©Harald Racke

Linear Grouping

m EADS Il 17.3 Bin Packing =] =
©Harald Racke

Linear Grouping

m EADS Il 17.3 Bin Packing =] =
©Harald Racke

Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

m EADS II 17.3 Bin Packing
©Harald Racke

Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

'Ml EADS Il 17.3 Bin Packing =]
©Harald Racke

Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

m EADS II 17.3 Bin Packing &
©Harald Racke

Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

T

EADS Il 17.3 Bin Packing =)
©Harald Racke

Lemma 83
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

T

EADS Il 17.3 Bin Packing =)
©Harald Racke

Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.

'Ml EADS Il 17.3 Bin Packing =]
©Harald Racke

Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

m EADS Il 17.3 Bin Packing =]
©Harald Racke

Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing & =
©Harald Racke

Lemma 84
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing & =
©Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.

» cost (for large items) at most

OPT(I') + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time O((%n)“/ez).

Can we do better?

©Harald Racke

17.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

Note that this is usually better than a guarantee of

(1 +€)OPT() +1 .

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Configuration LP

Change of Notation:

» Group pieces of identical size.

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.

> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.

> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
> s> is second largest size and b, number of pieces of size sp;

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Configuration LP

Change of Notation:
» Group pieces of identical size.
> Let 51 denote the largest size, and let by denote the number
of pieces of size s;.
> s> is second largest size and b, number of pieces of size sp;

> LR

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Configuration LP

Change of Notation:

>

>

Group pieces of identical size.

Let 51 denote the largest size, and let b; denote the number
of pieces of size s;.

s> is second largest size and b> number of pieces of size s;

Sm smallest size and b,, number of pieces of size s;,.

T

EADS 1l 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

We call a vector that fulfills the above constraint a configuration.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Configuration LP

©Harald Racke

17.4 Advanced Rounding for Bin Packing

Configuration LP

Let N be the number of configurations (exponential).

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

min Z?lej

s.t. Vie{l...m} z]}]:l Tjixj > b;
Vje{l,...,N} Xj > 0
vje{l,...,N} x; integral

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

How to solve this LP?

later...

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

We can assume that each item has size at least 1/SIZE(I).

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new

group.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new

group.
> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Harmonic Grouping

» Sort items according to size (monotonically decreasing).

» Process items in this order; close the current group if size
of items in the group is at least 2 (or larger). Then open new
group.

> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

» Only the size of items in the last group G, may sum up to
less than 2.

T

EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.

» For groups G»,...,G,_1 delete n; — n;_; items.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G,.
» For groups G»,...,G,_1 delete n; — n;_; items.

» Observe that n; > n;_;.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Lemma 85
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

» All items in a group have the same size in I'.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

» It discards n; — n;_1 pieces of total size at most

, o3
ni —ni_1 - Z
ni B

3 -
j=ni+1

since the smallest piece has size at most 3/n;.

Lemma 86
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G| and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

» It discards n; — n;_1 pieces of total size at most

n; —n; Hoo3
3 i -1 < 2
ng Z J

J=ni1+1

since the smallest piece has size at most 3/n;.

» Summing over all i that have n; > n;_ gives a bound of at

most
Ny-1

> 5 < O(log(SIZE(I))) .

j=1J

(note that n, < SIZE(I) since we assume that the size of
each item is at least 1/SIZE(I)).

Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I’; pack
discarded items in at most @ (log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack [xj] bins in configuration T; for all j; call the
packed instance I;.

6: Let I> be remaining pieces from I’

7: Pack I via BinPack(I»)

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Analysis

OPTyp(I7) + OPTip(I2) < OPTip(I') < OPT1p(I)

T

EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Analysis

OPTLP(Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

T

EADS I 17.4 Advanced Rounding for Bin Packing & =

©Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

> |xj]| is feasible solution for I; (even integral).

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =) =
©Harald Racke

Analysis

OPTLp (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of
no lesser size. Hence, OPTp(I") < OPTp(I)

> |xj]| is feasible solution for I; (even integral).
» xj—|x;]|is feasible solution for I5.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

2. Pieces scheduled because they are in I.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I> are handed down to the next level.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed
into at most OPTip many bins.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed
into at most OPTip many bins.

Pieces of type 1 are packed into at most
O(og(SIZE(I))) - L

many bins where L is the number of recursion levels.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

» The total size of items in I> can be at most Z?Ll xj—1xjl
which is at most the number of non-zero entries in the
solution to the configuration LP.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).

m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
Solls Vie{l...m} Z]Jylejin > b;
Vje{l,...,N} xj = 0

‘m EADS Il 17.4 Advanced Rounding for Bin Packing = =
©Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a

configuration T has Tj; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
Solls Vie{l...m} Z]Jylejin > b;
vje{l,...,N} xj = 0
Dual
max it yib;
sit. Vje{l,...,.N} X Tjyi < 1
Vie{l,..., m} yvi = 0

‘m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that
» is feasible, i.e.,

m
ZTji-SiSI,
i=1

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

» is feasible, i.e.,

m
ZTﬁ-SiSI,
i=1

» and has a large profit

m
> Tjiyi>1
i=1

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

» is feasible, i.e.,

m
ZTﬁ-SiSI,
i=1

» and has a large profit

m
> Tjiyi>1
i=1

But this is the Knapsack problem.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =
©Harald Racke

Separation Oracle

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max St yibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max >t yvibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0
Primal’
min (1+¢€) Zlle Xj
S.t. Vie{l...m} Eylejin > by
vje{l,...,N} xj = 0

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

» Let DUAL" be DUAL without unused constraints.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

» Let DUAL” be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

>

The constraints used when computing z certify that the
solution is feasible for DUAL'.

Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Let DUAL" be DUAL without unused constraints.

The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

The optimum value for PRIMAL" is at most (1 + €')OPT.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

>

The constraints used when computing z certify that the
solution is feasible for DUAL'.

Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Let DUAL" be DUAL without unused constraints.

The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

The optimum value for PRIMAL" is at most (1 + €')OPT.

We can compute the corresponding solution in polytime.

This gives that overall we need at most
(1 + €)OPTrp(I) + O(log? (SIZE(I)))

bins.

m EADS Il 17.4 Advanced Rounding for Bin Packing
©Harald Racke

This gives that overall we need at most
(1 + €)OPTrp(I) + O(log? (SIZE(I)))
bins.

We can choose ¢’ = % as OPT < #items and since we have a
fully polynomial time approximation scheme (FPTAS) for
knapsack.

‘m EADS Il 17.4 Advanced Rounding for Bin Packing =)
©Harald Racke

Lemma 87 (Chernoff Bounds)

Let X1,...,Xn ben independent 0-1 random variables, not
necessarily identically distributed. Then for X = > | X; and
Uu=E[X],L<u=<U,andd >0

el v
PriX > (1 + 5)U] < ((1-|—5)1+6) ,

and

e o t
PrlX < (1-0)L] < <(1_5)15) ,

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Lemma 88
For 0 < 6 <1 we have that

5 U
e) < ,U8s
(1 + 5)1+6 -

e o t 2
((1 - 6)1—5) se s

and

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then
Pr(X = a] <E[X]/a

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.

Then
Pr(X = a] <E[X]/a

Trivial!

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

E[X]

(1+6)U

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

E[X] 1

1+6)U 1+6

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Hence:
PriI X > (1+6)U] <

That’s awfully weak :(

E[X] 1

1+6)U 1+6

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Set p; = Pr[X; = 1]. Assume p; > 0O for all i.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

Now, we apply Markov:

E[etX]
tx t(1+6)U
Pr[e'* > e] < SI0)0

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds
Set p; = Pr[X; = 1]. Assume p; > 0O for all i.
Cool Trick:

Pr[X = (1 + 6)U] = PretX = !(1+9U]

Now, we apply Markov:

E[etX]
tx t(1+6)U
Pr[e'* > e] < SI0)0

This may be a lot better (1?)

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

E [etx]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

E [etX] =E [etzl'xi]

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

Elet] =kl <[T,

‘m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E [etxi]

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[eti] = (1-p;) + pie*

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] - e[B[], - T[]

E[etXi] =(1- pi) + piet =1+ pi(et -1)

.
m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

[LE [etxi]

.
m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

£[e] [0 -6 T -][]

E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

niE [etXi] < niepi(et—l)

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

o] - B[er5] - B[T e%] - T[]
E[etXi] = (1-pi) + pie' =1+ pi(e! —1) <P~V

[T,E [etXi] < ﬂiepi(et_” — eXpile'=1)

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Proof of Chernoff Bounds

£[e] - e[e5] - £[T,0] -] e[
E [etxi] = (1-p) +piet =1+pie! —1) < erit®-V

[[E [etxi] <]_[l,epi(et—l) _ eXpilet=1) _ ,(et-1)U

m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Now, we apply Markov:

PriX = (1 +9)U]

Pr[etX > et(1+5)U]

E[etX]

= ot(1+0)U

©Harald Racke

18.1 Chernoff Bounds

Now, we apply Markov:

Pr[X = (1 + 6)U] = PretX = !(1+9U]
E[etX] ele'-DU

= ol U = ot(1+8)U

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Now, we apply Markov:

Pr[X = (1 + 6)U] = Pr[e'X = ot (1+9)U]

E[etX] e(et—l)U

We choose t = In(1 + 9).

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Now, we apply Markov:

Pr[X = (1 + 6)U] = PretX = !(1+9U]
E[etX] ele'-DU

ed

T et(1+8)U = pt(1+6)U —

We choose t = In(1 + 6).

<

(1+ 5)1+6

z

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Lemma 89
For 0 < 6 <1 we have that

5 U
e) < ,U8s
(1 + 5)1+6 -

e o t 2
((1 - 6)1—5) se s

and

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:

(

e v
) < e7U62/3

(1+ 5)1+6

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

True for 6 = 0.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
e’ v ~US8%/3
((1 + 5)1+6> =e

Take logarithms:

UG- (1+38)In(1+8)) <-Us%/3

True for 6 = 0. Divide by U and take derivatives:

—-In(1+6) <-26/3

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

f6):=—-In(1+6)+25/3<0

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1

FO=-175

+2/3

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1 v 1
Tve P23 (5)_(1+5)2

f1(6) =~

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

f6):=—-In(1+6)+25/3<0

A convex function (f"'(6) = 0) on an interval takes maximum at
the boundaries.

1 v 1
Tve P23 (5)_(1+5)2

f1(6) =~

F(0)=0and f(1) = —1In(2) +2/3 <0

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

For 6 = 1 we show

(

e v
) < o USI3

(1+ 5)1+6

©Harald Racke

18.1 Chernoff Bounds

For 6 = 1 we show

e? v -US/3
((1 + 5)1+6> =e

Take logarithms:

UWGb-1+6)In(1+6)) <-Ud/3

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

For 6 = 1 we show

e? v -US/3
((1 +5)1+6> =e

Take logarithms:

UWGb-1+6)In(1+6)) <-Ud/3

True for 6 = 0.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

For 6 = 1 we show
U
e < »-Ud/3
(1+ 5)1+5 =€

Take logarithms:

UWB-(1+6)In(1+6)) <-Ud/3

True for 6 = 0. Divide by U and take derivatives:

—-In(1+6) <-1/3 < In(1+6)=1/3 (true)

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

Show:

(

-5 L
e) < o-L8%/2

(1- 5)1—6

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

Show:
6_5 L 2
((1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
6_5 L 2
((1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

True for 6 = 0.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Show:
8_5 L 2
<(1—5)1—5> <e7L6 "

Take logarithms:

L(-6—(1-38)In(1 -8)) < —-L&%/2

True for 6 = 0. Divide by L and take derivatives:

In(1-6)=<-6

Reason:
As long as derivative of left side is smaller than derivative of
right side the inequality holds.

‘m EADS Il 18.1 Chernoff Bounds =)
©Harald Racke

In(1-96)=<-¢

[T

EADS Il
©Harald Racke

18.1 Chernoff Bounds

True for 6 = 0.

In(1-6)=<-6

©Harald Racke

18.1 Chernoff Bounds

In(1-6)=<-6

True for 6 = 0. Take derivatives:

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

In(1-6)=<-6

True for 6 = 0. Take derivatives:

This holds for 0 < 6 < 1.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Integer Multicommodity Flows

» Given s;-t; pairs in a graph.

» Connect each pair by a path such that not too many path

use any given edge.

T

min w
S-t- vi zpeg)i Xp = 1
Zp:eep Xp = W
xp € {0,1}
EADS Il 18.1 Chernoff Bounds & =

©Harald Racke

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set 2°; at random according
to the probability distribution given by the Linear Programming
solution.

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Theorem 90
If W* > clnn for some constant c, then with probability at least
n=</3 the total number of paths using any edge is at most

W* + /cW*Inn.

Theorem 91
With probability at least n=¢/3 the total number of paths using
any edge is at most W* + cInn.

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

E[Y.]

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

EY]=3 3 x;

i pePiecp

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Let X! be a random variable that indicates whether the path for
si-t; uses edge e.

Then the number of paths using edge e is Y, = > ; X|.

ElYll=> > xp= > xh=<w*

i pePiecp pecP

‘m EADS Il 18.1 Chernoff Bounds =) =
©Harald Racke

Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

Integer Multicommodity Flows

Choose 6 = +/(clnn)/W*.

Then
Pr[Y, = (1 + 8)W*] < e W*8%/3 =

1

ne/3

m EADS Il 18.1 Chernoff Bounds
©Harald Racke

19 MAXSAT

Problem definition:
» 1 Boolean variables

©Harald Racke

19 MAXSAT

19 MAXSAT

Problem definition:

» 1 Boolean variables

» m clauses Cy,..

., Cm. For example

C7 =X3V X5V Xg

©Harald Racke

19 MAXSAT

19 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.

‘m EADS Il 19 MAXSAT
©Harald Racke

19 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.

» Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.

m EADS Il 19 MAXSAT =) =
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

‘m\ EADS Il 19 MAXSAT
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

m EADS Il 19 MAXSAT =)
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

m EADS Il 19 MAXSAT =)
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

m EADS Il 19 MAXSAT =) =
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation Xx; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with £;.

m EADS Il 19 MAXSAT =) =
©Harald Racke

19 MAXSAT

Terminology:
» A variable x; and its negation x; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

» We assume a clause does not contain x; and Xx; for any i.

» x; is called a positive literal while the negation X; is called a
negative literal.

» For a given clause C; the number of its literals is called its
length or size and denoted with ;.

» Clauses of length one are called unit clauses.

m EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).

‘m\ EADS Il 19 MAXSAT =) =
©Harald Racke

Define random variable X with

X = 1 if C; satisfied
7L 0 otw.

m EADS Il 19 MAXSAT
©Harald Racke

Define random variable X; with

X = 1 if C; satisfied
771 0 otw.

Then the total weight W of satisfied clauses is given by

W = Z‘LUJ'XJ'
J

‘m EADS Il 19 MAXSAT
©Harald Racke

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]
J

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

=2uy1- ()")

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > wjE[X/]
J
= > w;Pr[C;j is satisified]

=§wj<1—(§)€j)
= ;%wj

OPT

=

1
2

T

EADS Il
©Harald Racke

19 MAXSAT

MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/xi\/ \/)_Ci

jGPJ' jGNJ'

‘m\ EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/xi\/ \/)_Ci

jGPJ' jENJ'
max 2jw;zj
s.t. Vj Zier i+ ZieNj(l -Yi) = zj
Vi yi € {0,1}
Vj zZj = 1

‘m EADS Il 19 MAXSAT =)
©Harald Racke

MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and,
hence, to false with probability (1 — y;)).

‘m\ EADS Il 19 MAXSAT =)
©Harald Racke

Lemma 92 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay

k 1/k

i=1 i=1

m EADS Il 19 MAXSAT
©Harald Racke

Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

‘M\ EADS Il 19 MAXSAT =)
©Harald Racke

Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 94
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)

for A € [0,1].

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 94
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)
= (1-2)f(0) +Af(1)

for A € [0,1].

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Definition 93
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 94
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S(A) =f((1-A)0+ A1)
> (1-A)f(0)+Af(1)
=a+Ab

for A € [0,1].

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Pr[C; not satisfied]

[T

EADS Il
©Harald Racke

19 MAXSAT

Pr[C; not satisfied] = [[(1 —) [] »i

i€P; ieN;

[T

EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied]

IA

[Ta-> [T i

i

T

EADS Il
©Harald Racke

i€P; iEN;
1
7 D A-y)+ > v
J \iep; iEN;
19 MAXSAT

Pr[C; not satisfied]

[Ta-> [T i
i€P; ieN;

4
é(Z(l—ylH > yl)]

iEP; iEN;

_ #J.
= (Eyﬁ Z(l—yl)]
| i€P; ieEN;

IA

m EADS Il 19 MAXSAT =)
©Harald Racke

Pr[C; not satisfied]

IA

[Ta-> [T i
i€P; ieN;

iEP; iEN;

(Z it Z(l—yl

i€P; ieEN;

4
é(Z(l—ylH > yl)]

)

T

EADS Il
©Harald Racke

19 MAXSAT

The function f(z) =1 — (1 — %)e is concave. Hence,

Pr[C; satisfied]

m EADS Il 19 MAXSAT
©Harald Racke

The function f(z) =1 — (1 — %)e is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — (— ZJ)
Y

m EADS Il 19 MAXSAT
©Harald Racke

The function f(z) =1 - (1

2\ i
Pr[C; satisfied] > 1 — (_ J)

— Z)Uis concave. Hence,

4;

[1-0-8)")

©Harald Racke

19 MAXSAT

The function f(z) =1 — (1 — %)e is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — (— ZJ)
Y

[i-(-2)° =

’ {-1 z r=2 .
f(z) = —7[1 - ?] =<0 for z € [0,1]. Therefore, f is
concave.

‘M\ EADS Il 19 MAXSAT =)
©Harald Racke

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > w;Pr[C; is satisfied]
J

[T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > w;Pr[C; is satisfied]

J

> D w;z; [1 - (1 -

J

1

4

)|

T

EADS Il
©Harald Racke

19 MAXSAT

E[W] = > w;Pr[C; is satisfied]

J
> > w;z; [1— (1—
j
> (1—1>0PT.
e

1

4

)|

T

EADS Il
©Harald Racke

19 MAXSAT

MAXSAT: The better of two

Theorem 95

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.

‘m EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wi,W2}]

‘m\ EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

‘m\ EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

3zwa - () g ())

‘m EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

o3)

gwjzj ; (1—(1_31])%-)+;(1_(;)ej>l

3 .
> for all integers

%

\%

‘m EADS Il 19 MAXSAT =)
©Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[3W1 + 3W>]

o3)

>
0.
1 1\7) 1 1\ %
J
> %for aIIY integers

3
> —0OPT
> 40

‘m EADS Il 19 MAXSAT =)
©Harald Racke

£

wl /

—— randomized rounding
0.5 —— flipping coins
- average
! !
1 2 3 4 5 6

¢

m EADS Il 19 MAXSAT =)
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0, 1] and set x; to true
with probability f(y;).

m EADS Il 19 MAXSAT =) =
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

m EADS Il 19 MAXSAT
©Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

Theorem 96
Rounding the LP-solution with a function f of the above form
gives a %-approximation.

‘m EADS Il 19 MAXSAT =)
©Harald Racke

0.5

4x—1
——1-4

0.5

T

EADS Il
©Harald Racke

19 MAXSAT

Pr[C; not satisfied]

[T

EADS Il
©Harald Racke

19 MAXSAT

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

lEPj IENJ'

T

EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

iEPj iENJ'
< n 47Yi 1_[4vi—1
iEPj iENj

m EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

iEPj iENJ'
< n 47Yi 1_[4vi—1
iEPj iENj

_ 4*(Zier yi*ZieNj(lfyi))

‘m EADS Il 19 MAXSAT
©Harald Racke

Pr[C; not satisfied] =]_[(1 - f(v) 1_[S (i)

iEPj iENJ'
< n 47Yi 1_[4vi—1
iEPj iENj

_ 4*(Zier yi*ZieNj(lfyi))

<477

‘m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied]

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] = 1 — 472

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W]

m EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 —477 is concave on [0, 1]

. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

Therefore,

E[W] = > w;Pr[C; satisfied]
J

‘m\ EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ
J

‘m\ EADS Il 19 MAXSAT
©Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ > zOPT
J

‘M\ EADS Il 19 MAXSAT
©Harald Racke

Can we do better?

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 97 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.

Lemma 98
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
G 2j Wiz
st Vj Yiep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
Vj zj < 1

‘m EADS Il 19 MAXSAT =) =
©Harald Racke

Lemma 98
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
G 2j Wiz
st Vj Yiep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
v j zj < 1

Consider: (x1 VvV x2) A (X1 VX2) A (X1 V X2) A(X1V X2)

> any solution can satisfy at most 3 clauses

> we can set | = y» = 1/2 in the LP; this allows to set
Z1=22=23=24=1

» hence, the LP has value 4.

m EADS Il 19 MAXSAT =) =
©Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Si1 wix;
s.t. YuelU Zi;ueSi Xi =
Vie{l,..., k} xXi =

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wix;
s.t. VuelU iyes;Xi = 1
Vie{l,..., k} xi = 0
Dual Formulation:
max Duecu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu =2 0

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible
> ldentify an element e that is not covered in current primal
integral solution.

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable v, until a dual constraint becomes

tight (maybe increase by 0!).

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:
» Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> ldentify an element e that is not covered in current primal

integral solution.
» Increase dual variable v, until a dual constraint becomes

tight (maybe increase by 0!).
> If this is the constraint for set S; set xj = 1 (add this set to

your solution).

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve = wj

eeSj

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

2.
J

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

Jwi=2, 2, Ve

j eeSK,-

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

ZwJ—Z Zye—zm e €S}y

Jj e€s;

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

» For every set S; with x; = 1 we have

D, Ve =wj

eeSj

» Hence our cost is

Qwj=2 ZJ’e—ZH] eeSi}-ve<f- Zye<f OPT

J J ees;

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= z Ye = Wj

(—ZESJ'

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

eeSj

If we would also fulfill dual slackness conditions

YVe>0= > xj=1

Jie€Ss;

then the solution would be optimal!!l

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > x;=f

Jie€S;

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

We don'’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > x;=f

Jie€S;
This is sufficient to show that the solution is an
f-approximation.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Suppose we have a primal/dual pair

min 2.j CjX;j max
s.t. Vi Zj: aijxj = b s.t. Vj
Vj xj = 0 Vi

2ibiyi
2iaijYi
i

IA

%

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Suppose we have a primal/dual pair

min 2.j CjX;j max >ibivyi
s.t. Vi Zj: aijxj = b s.t. Vi aijyi < ¢Cj
Vj X; = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1
Xj > 0= Zaijyi = &Cj
i
yi>0: Zainj SBbi
J

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Then

Z CjXj
J

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Z CjXj
J

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

right hand side of j-th
dual constraint

I
YL
J

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Z CiXj|=

2| 2 i | Xi

J

©Harald Racke

20 Primal Dual Revisited

Then

Deixjl=ad | Y aijyi | x;
j i\

o3 (Sas,)

i J

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Then

Z CjXj
J

<o) | D aijyi|x;
Jj i

o3 (Sas,)

i \j
<aB- > biyi
i

©Harald Racke

20 Primal Dual Revisited

Then

Deixjl=ad | Y aijyi | x;
j i\

o3 (Sas,)

i J

B> biyi
i

dual objective

IA

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some
cycles.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

We can encode this as an instance of Set Cover
» Each vertex can be viewed as a set that contains some
cycles.
» However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Let C denote the set of all cycles (where a cycle is identified by
its set of vertices)

Primal Relaxation:

min Dy Wy Xy
s.t. VC E C ZUGC X‘U = 1
Yv xy = 0
Dual Formulation:
max Y.cecYc
s.t. VveV ZC:vECyC = Wy
vC yc = 0

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).

» Increase y¢ until dual constraint for some vertex v
becomes tight.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start withx =0and y =0

» While there is a cycle C that is not covered (does not contain
a chosen vertex).
» Increase y¢ until dual constraint for some vertex v
becomes tight.
» set x, = 1.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Then

Zwvxv
v

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Zwvxv =Z Z YcXv
v

vV CwveC

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Then

Zwvxv ZZ Z YcXv
v

vV CwveC

>, 2. e

veSCveC

where S is the set of vertices we choose.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Then

Zwvxv ZZ Z YcXv
v

vV CwveC
=2 2 v
veSCveC
=>18nCl-yc
&

where S is the set of vertices we choose.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Then

Zwvxv :Z Z YcXv
v

vV CwveC

=2 2
veSCveC

=2 1SnCl- e
&

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but
this is unrealistic.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Algorithm 1 FeedbackVertexSet

1. vy <0

2:x <0

3: while exists cycle C in G do

4: increase yc until there is v € C s.t. Y c.pec Ve = Wy
5 Xy =1

6 remove v from G

7 repeatedly remove vertices of degree 1 from G

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

‘m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm
chooses at most one vertex from P.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 99

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=|SNnC| <0O(logn) .

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
st. v§SeSs Ze:g(s)xe > 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Ys
st. Ve €E Dgoesis) Vs
vSesS s

vV IA

c(e)

20 Primal Dual Revisited

©Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vsSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Primal Dual for Shortest Path

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

m EADS Il 20 Primal Dual Revisited =) =
©Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Algorithm 1 PrimalDualShortestPath

1. v <0

2. F <0

3: while there is no s-t path in (V,F) do

4 Let C be the connected component of (V,F) con-
taining s

Increase yc¢ until there is an edge ¢’ € 6(C) such
that Xg.re5(s) Vs = c(e).

F <~ Fu{e'}

: Let P be an s-t path in (V,F)

8: return P

(9]

N @

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Lemma 100
At each point in time the set F forms a tree.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Lemma 100
At each point in time the set F forms a tree.

Proof:

> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 100
At each point in time the set F forms a tree.

Proof:
> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

> cle)

ecP

> 2. s

ecP S:eed(S)

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

> 2. s

ecP S:eed(S)

S PASS) s

S:seS,t¢S

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

D=2 > s

ecP ecP S:eed(S)

= > IPns©S)|-ys
S:seStgS

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

m EADS Il 20 Primal Dual Revisited
©Harald Racke

D=2 > s

ecP ecP S:eed(S)

= > IPns©S)|-ys
S:seStgS

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

‘m EADS Il 20 Primal Dual Revisited
©Harald Racke

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior

vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

If S contains two edges from P then there must exist a subpath
P’ of P that starts and ends with a vertex from S (and all interior
vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si,ti,i=1,...,k, and a cost function ¢ : E — R* on the edges.
Find a subset F < E of the edges such that for every

i€ {1,...,k} there is a path between s; and t; only using edges
in F.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si, ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ecle)xe
s.t. VScV:SeS;forsomei DocssyXe = 1
Ve e E x. € {0,1}

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Steiner Forest Problem:
Given a graph G = (V, E), together with source-target pairs

si, ti,i =1,...,k, and a cost function c : E — R* on the edges.
Find a subset F < E of the edges such that for every
i€ {1,...,k} there is a path between s; and t; only using edges
in F.
min 2ecle)xe
s.t. VScV:SeS;forsomei DocssyXe = 1
Ve e E x. € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

max 2S:3ist.Ses; Vs
s.t. VeeE 25;865(5) ys =< cl(e)
s =2 0

A

The difference to the dual of the shortest path problem is that
we have many more variables (sets for which we can generate a
moat of non-zero width).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Algorithm 1 FirstTry

1. v <0

2:F <0

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V,F)
such that |C N {s;,t;}| = 1 for some 1.

5: Increase yc¢ until there is an edge e’ € 6(C) s.t.
2.sesieres(s) VS = Ce’

6: F—Fu{e'}

7: return |UJ; P;

m EADS Il 20 Primal Dual Revisited
©Harald Racke

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Secle)=> > s

ecF ecF S:eed(S)

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dDcle)=> > ys=>18(S)NFl-ys .

ecF ecF S:eed(S) S

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dDcle)=> > ys=>18(S)NFl-ys .

ecF ecF S:eed(S) S

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dee)=> > ys—Zlé (S)NFl-ys .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

dee)=> > ys—ZI(S (S)NFl-ys .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

» The i-th pair is vy-v;.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

docler=2 > y5—2|55)ﬂF| Vs .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.
» The i-th pair is vy-v;.

» The first component C could be {vg}.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

docler=2 > y5—2|55)ﬂF| Vs .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

v

The i-th pair is vo-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

doeler=2 > ys—2|5(s>mp| s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

v

The i-th pair is vo-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

doeler=2 > ys—2|5(s>mp| s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that |6(S) N F| < « we are in
good shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, vy,..., Uk.

» The i-th pair is vy-v;.

\4

The first component C could be {vg}.

v

We only set yyy,; = 1. All other dual variables stay 0.

v

The final set F contains all edges {vg,v;},i=1,...,k.
Yivet > 0 but [6({vo}) NF| =

v

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Algorithm 1 SecondTry

1:y<0;F<0;¢ -0

2: while not all s;-t; pairs connected in F do

3: {—4+1
4: Let C be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some i.

Increase y¢ for all C € C uniformly until for some edge
ep €6(C), C" € Cs.t. Xge)e5(5) Vs = Cey
6: F — Fu {ep}

7. FF < F

8: for k — £ downto 1 do // reverse deletion
9 if F/ — ey is feasible solution then
0: remove ey from F’

1: return F’

vl

1
1

m EADS Il 20 Primal Dual Revisited
©Harald Racke

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges
in any order.

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

Example

51

.51

S2 to

053

t3

©Harald Racke

20 Primal Dual Revisited

Example

(]
S1 52 tr

(5]

053

t3

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Example

(5]

51

S2 to

053

t3

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Example

(5]

51

S2 to

053

t3

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Example

(5]

51

S2 to

053

t3

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Example

EADS Il

©Harald Racke

20 Primal Dual Revisited

«B > CEr» <

>

456/491

Lemma 101
For any C in any iteration of the algorithm

> 18(C)nF'| <2[C]
ceC

This means that the number of times a moat from C is crossed
in the final solution is at most twice the number of moats.

Proof: later...

‘m EADS Il 20 Primal Dual Revisited =]
©Harald Racke

2. ce

ecF’

[T

EADS Il
©Harald Racke

20 Primal Dual Revisited

2. =2 2 s

ecF’ ecF’ S:eed(S)

m EADS II 20 Primal Dual Revisited
©Harald Racke

Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) N

[T

EADS Il 20 Primal Dual Revisited
©Harald Racke

dDece=> > yS—ZIF Nos)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

m EADS Il 20 Primal Dual Revisited
©Harald Racke

Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > IFns0)
ceC

and the increase of the right hand side is 2¢|C].

‘m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

dDece=> > ys—Z|Fma<s>| Vs .

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» |n the i-th iteration the increase of the left-hand side is

€ > [Fnés(O)
ceC
and the increase of the right hand side is 2¢|C].

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 102
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

m EADS Il 20 Primal Dual Revisited =)
©Harald Racke

Lemma 102
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 102
For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 102

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).
» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H = F —F;.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

Lemma 102

For any set of connected components C in any iteration of the
algorithm

> 16(C)nF'| < 2|C]
ceC

Proof:
» At any point during the algorithm the set of edges forms a
forest (why?).

» Fix iteration i. e; is the set we add to F. Let F; be the set of
edges in F at the beginning of the iteration.
» Let H = F —F;.

» All edges in H are necessary for the solution.

‘m EADS Il 20 Primal Dual Revisited =] =
©Harald Racke

» Contract all edges in F; into single vertices V'.

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Contract all edges in F; into single vertices V'.

» We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

T

EADS I 20 Primal Dual Revisited &
©Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T

EADS Il 20 Primal Dual Revisited & =
©Harald Racke

» Contract all edges in F; into single vertices V'.
» We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

» Color a vertex v € V' red if it corresponds to a component from
C (an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

T

> We have
?
> deg(v) = > [5(C) nF'| =2|C| =2R|
vER cecC
EADS 1l 20 Primal Dual Revisited =) = =

©Harald Racke

» Suppose that no node in B has degree one.

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.
» Then

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.

» Then

>, deg(v)

VER

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

T

EADS I 20 Primal Dual Revisited
©Harald Racke

» Suppose that no node in B has degree one.

» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

< 2(|R| + |B|) — 2|B|

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

» Suppose that no node in B has degree one.

» Then

> deg(v) = > deg(v) — > deg(v

VER VERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

T

EADS Il
©Harald Racke

20 Primal Dual Revisited

» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

T

EADS I 20 Primal Dual Revisited & =
©Harald Racke

» Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) — > deg(v

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

T

EADS 1l 20 Primal Dual Revisited & =
©Harald Racke

» Suppose that no node in B has degree one.
» Then
> deg(v) = > deg(v) — > deg(v)

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

T

EADS 1l 20 Primal Dual Revisited & =
©Harald Racke

» Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

vER vERUB veB

< 2(|R| + |B|) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

» Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

» But this means that the cluster corresponding to b must
separate a source-target pair.

» But then it must be a red node.

T

EADS 1l 20 Primal Dual Revisited & =
©Harald Racke

21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vVSeSs 2665(5) Xe = 1
Ve e E x. € {0,1}

S is the set of subsets that separate s from t.

m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vSeS 2665(5) Xe = 1
Ve e E X = 0
S is the set of subsets that separate s from t.
The Dual:
max 2.5 Vs
st. Ve€E Dgeesis)Vs =< cle)
vses ys = 0

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vSeS 2665(5) Xe = 1
Ve € E Xe = 0
S is the set of subsets that separate s from t.
The Dual:
max 2.5 Vs
st. Ve€E Dgeesis)Vs =< cle)
vses ys = 0

The Separation Problem for the Shortest Path LP is the Minimum
Cut Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Minimum Cut

min Decle)xe
st. VPP D.cpXe
Ve e E Xe

>

€

1
10,1}

P is the set of path that connect s and t.

m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Minimum Cut

min Decle)xe
st. VPe?P DeepXe = 1
Ve € E Xe =
P is the set of path that connect s and t.
The Dual:
max 2p P
st. Ve€E Dp.ecpyp < cle)
VP e P yp = 0

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics
Minimum Cut

min Decle)xe
st. VPe?P DeepXe = 1
Ve € E Xe =
P is the set of path that connect s and t.
The Dual:
max 2p P
st. Ve€E Dp.ecpyp < cle)
VP e P yp = 0

The Separation Problem for the Minimum Cut LP is the Shortest
Path Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Minimum Cut

min Secle)le
st. VPeP S,eple = 1
Ve e E l, =
P is the set of path that connect s and t.
The Dual:

max 2pfp

st. Vee€E Dpe.epfr =< cle)

VP e?P fr = 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.

» We can view ¥, as defining the length of an edge.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.

> Define d(u,v) = MiNpath P btw. u and v Decp le as the
Shortest Path Metric induced by ,.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.

> Define d(u,v) = MiNpath P btw. u and v Decp le as the
Shortest Path Metric induced by ,.

» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we

could reduce ¥, without affecting the distance between s
and t.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

21 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
» We can view ¥, as defining the length of an edge.
» Define d(u,v) = miNpath P btw. u and v D.ecp Le as the
Shortest Path Metric induced by ,.
» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we
could reduce £, without affecting the distance between s
and t.

Remark for bean-counters:
d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of » should we choose?

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of ¥ should we choose? choose randomly!!!

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

How do we round the LP?

» Let B(s,7) be the ball of radius » around s (w.r.t. metric d).

Formally:
B={veV|d(,v) <r}

» ForO<7r <1, B(s,7) is an s-t-cut.

Which value of ¥ should we choose? choose randomly!!!

Formally:
choose v u.a.r. (uniformly at random) from interval [0, 1)

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

) A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

5 A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

5 A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

5 A

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

v
(] O
N u

~

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

v
(] O
N u

~

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

(] O
N u

~

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

&
N
~0

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

&
N
~0

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

&
N
~0

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
<
-

m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

Pr[e is cut]

‘m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

Pr[e is cut] = Pr[r € [d(s,u),d(s,v))]

‘m EADS Il 21 Cuts & Metrics =]
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

as,v) —d(s,u)

Prle is cut] = Pr[r € [d(s,u),d(s,v))] <)

‘m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is the probability that an edge (u, v) is in the cut?

N
=
=S

» asssume wlog. d(s,u) < d(s,v)

as,v) —d(s,u)

Prle is cut] = Pr[r € [d(s,u),d(s,v))] <
<L,

1-0

‘m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is the expected size of a cut?

E[size of cut] = E[Ze c(e)Pr[e is cut]]
< Zec(e)ﬁe

m EADS Il 21 Cuts & Metrics
©Harald Racke

What is the expected size of a cut?

E[size of cut] = E| Ze c(e)Pr[e is cut]]
< Zec(e)ﬂe

On the other hand:

Zec(e)ﬂe < size of mincut

as the ¥, are the solution to the Mincut LP relaxation.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

What is the expected size of a cut?

E[size of cut] = E| Ze c(e)Pr[e is cut]]
< Zec(e)ﬂe

On the other hand:

Zec(e)ﬂe < size of mincut

as the ¥, are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

min Secle)le
s.t. VPeP;forsomei D,ple = 1
Ve € E t. € {0,1}

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R* on the edges.
Find a subset F < E of the edges such that all s;-t; pairs lie in
different components in G = (V,E \ F).

min Secle)le
s.t. VPeP;forsomei D,ple = 1
Ve € E t. € {0,1}

Here P; contains all path P between s; and t;.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

Re-using the analysis for the single-commodity case is
difficult.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

> If for some R the balls B(s;, R) are disjoint between different
sources, we get a 1/R approximation.

» However, this cannot be guaranteed.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

T

EADS Il 21 Cuts & Metrics =g
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

T

EADS Il 21 Cuts & Metrics &
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

> Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z0.

T

EADS Il 21 Cuts & Metrics & =
©Harald Racke

» Assume for simplicity that all edge-length £, are multiples
of 6 <« 1.

» Replace the graph G by a graph G’, where an edge of length
L, is replaced by £, /5 edges of length 6.

» Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z90.

Algorithm 1 RegionGrowing(s;i, p)
1:. z<0

2: repeat

3 flip a coin (Pr[heads] = p)
4. z—z+1
5
6

- until heads
: return B(s;, z)

m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(sj, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

‘m EADS Il 21 Cuts & Metrics =)
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2: C — RegionGrowing(si, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

m EADS Il 21 Cuts & Metrics
©Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pairin G’ do

2 C — RegionGrowing(si, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s, z)

» probability of cutting an edge is only p

» a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

» if we choose p = § the probability of cutting an edge is only
its LP-value; our expected cost are at most OPT.

m EADS Il 21 Cuts & Metrics
©Harald Racke

Problem:
We may not cut all source-target pairs.

m EADS Il 21 Cuts & Metrics
©Harald Racke

Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

If we ensure that we cut before reaching radius 1/2 we are in
good shape.

‘m EADS Il 21 Cuts & Metrics =)
©Harald Racke

» choose p =6Ink -6

[T

EADS Il
©Harald Racke

21 Cuts & Metrics

» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

T

EADS Il 21 Cuts & Metrics
©Harald Racke

» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

» we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

S
IA
o
Sk

Pr[not successful] < (l—p)% = ((1—;9)1/”)

IA

T

EADS I 21 Cuts & Metrics &
©Harald Racke

» choose p =6Ink -6
» we make % trials before reaching radius 1/2.

» we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

S

2 —

Prnot successful] < (1—p)? = ((1—;9)1/”) ce b <L

k3

» Hence,

. . 1
Pr[3i that is not successful] < X2

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

m EADS Il 21 Cuts & Metrics
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize | succ.]

m EADS Il 21 Cuts & Metrics
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize]
~ Pr[success]

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] =

Pr[success]
E[cutsize] 1 61nk - OPT
~ Pr[success] T~ 1 — %

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize] ! 6Ink.OPT < 8Ink - OPT

~ Pr[success] T~ 1 — %

m EADS Il 21 Cuts & Metrics =] =
©Harald Racke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]
+ Pr[no success] - E[cutsize | no success]

_ E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

E[cutsize] ! 6Ink.OPT < 8Ink - OPT

~ Pr[success] T~ 1 — %

Note: success means all source-target pairs separated

We assume k > 2.

‘m EADS Il 21 Cuts & Metrics =) =
©Harald Racke

If we are not successful we simply perform a trivial
k-approximation.

This only increases the expected cost by at most
& - kOPT < OPT/k.

Hence, our final cost is O(Ink) - OPT in expectation.

‘m EADS Il 21 Cuts & Metrics
©Harald Racke

Facility Location

Given a set L of (possible) locations for placing facilities and a

set D of customers together with cost functions s: D x L — R*
and o: L — R* find a set of facility locations F together with an
assignment ¢ : D — F of customers to open facilities such that

D> o(f) + D s(c,plc))

feF
is minimized.
In the metric facility location problem we have

s(e, f) <s(e, f1) +s(c', f)+sc, f) .

‘m EADS Il 22 Facility Location = =
©Harald Racke

Facility Location

Integer Program

min 2ier JiYi + 2ier 2.jep CijXij
s.t. VjeD DicrXij = 1
VieF,jeD Xij = Vi
VieF,jeD xij € {0,1}
VieF yvi € {0,1}

As usual we get an LP by relaxing the integrality constraints.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Facility Location

Dual Linear Program

max
s.t.

Zjeva

VieF ZjeDwij
VieF,jeED v;—wj
VieF,jeD Wij

IV IA A

fi

Cij

©Harald Racke

22 Facility Location

Facility Location

Definition 103
Given an LP solution (x*, ¥*) we say that facility i neighbours
client j if x;; > 0. Let N(j) = {iEF:x;“j > 0}.

m EADS I 22 Facility Location =
©Harald Racke

Lemma 104

If (x*,v*) is an optimal solution to the facility location LP and
(v*,w*) is an optimal dual solution, then xi*j > 0 implies

Cij = v;-".

Follows from slackness conditions.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

m EADS Il 22 Facility Location =) =
©Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN() = 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v ;.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Suppose we open set S < F of facilities s.t. for all clients we have
SNN(j) + 0.

Then every client j has a facility i s.t. assignment cost for this
clientis at most ¢;j < v ;.

Hence, the total assignment cost is

D.Ci;j < 2 vf =OPT,
J J

where i; is the facility that client j is assigned to.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Problem: Facility cost may be huge!

m EADS I 22 Facility Location
©Harald Racke

Problem: Facility cost may be huge!

Suppose we can partition a subset F’ < F of facilities into
neighbour sets of some clients. l.e.

F' =|HNGi)
k

where j1, j2,... form a subset of the clients.

‘m EADS Il 22 Facility Location
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik

m EADS Il 22 Facility Location =) =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik :fik Z x;kjk

i€N (jk)

m EADS Il 22 Facility Location =) =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk

i€N (jk) €N (jk)

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zfik
k

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk = Z fiyi*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk = Z Z fl)’l

k ieN(jk)

m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik = fik Z x;kjk = Z fix;kjk = Z fiyi*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk—z Z flyl Zfiyi*

k ieN(jx) ieF’

‘m EADS II 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fio= T 20 xbo< D fixh< X fiv .

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk—z Z flyl Zfiy{kﬁz.fiyi*

k ieN(jx) ieF’ ieF

‘m EADS Il 22 Facility Location =
©Harald Racke

Now in each set N(jx) we open the cheapest facility. Call it f;,.

We have

fik:fik Z x;kjks Z fixl?kjkS Z flyl*

i€N (jk) €N (jk) €N (jk)

Summing over all k gives

Zflk <> > fivi= D fivi=> five

k ieN(jx) ieF’ ieF

Facility cost is at most the facility cost in an optimum solution.

‘m EADS Il 22 Facility Location =
©Harald Racke

Problem: so far clients ji, j2, ... have a neighboring facility.

What about the others?

©Harald Racke

22 Facility Location & =

Problem: so far clients ji, j2, ... have a neighboring facility.
What about the others?

Definition 105
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Problem: so far clients ji, j2, ... have a neighboring facility.

What about the others?

Definition 105
Let N2(j) denote all neighboring clients of the neighboring
facilities of client j.

Note that N (j) is a set of facilities while N2(j) is a set of clients.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Algorithm 1 FacilityLocation
1: C < D// unassigned clients
2: k<0
3: while C = 0 do
4 k—k+1
5 choose ji € C that minimizes v;f
6: choose iy € N(ji) as cheapest facility
7
8

assign jx and all unassigned clients in N2(jx) to i
C — C - {jx} — N2(jx)

m EADS Il 22 Facility Location
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

m EADS II 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:

» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.

‘M EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj + Cpy

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp <V +V] + V)

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp S V] +V] + V) <3V)

‘m EADS Il 22 Facility Location =
©Harald Racke

Facility cost of this algorithm is at most OPT because the sets
N (jx) are disjoint.

Total assignment cost:
» Fix k; set j = ji and i = ix. We know that ¢;; < v;‘.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Cip < Cij + Chj+Cpp S V] +V] + V) <3V)

Summing this over all facilities gives that the total assignment
cost is at most 3 - OPT. Hence, we get a 4-approximation.

‘m EADS Il 22 Facility Location =
©Harald Racke

In the above analysis we use the inequality

> fiyF <OPT .

ieF

m EADS I 22 Facility Location
©Harald Racke

In the above analysis we use the inequality

> fiyF <OPT .

ieF

We know something stronger namely

Zfiyi* + Z z Ciszkj < OPT .

ieF ieF jeD

m EADS I 22 Facility Location
©Harald Racke

Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to x;“jk.

‘m EADS Il 22 Facility Location = =
©Harald Racke

Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random
facility according to xj‘jk.

» Then we incur connection cost

gk
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
Vi)

‘m EADS Il 22 Facility Location = =
©Harald Racke

Observation:

» Suppose when choosing a client jj, instead of opening the
cheapest facility in its neighborhood we choose a random

facility according to xf‘jk.

» Then we incur connection cost
PR
ZClexijk
i

for client ji. (In the previous algorithm we estimated this by
*
vjk).
» Define
X LAk
¢ = chjxij
i

to be the connection cost for client j.

‘m EADS Il 22 Facility Location = =
©Harald Racke

What will our facility cost be?

m EADS I 22 Facility Location
©Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

‘m EADS Il 22 Facility Location = =
©Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

We open facility i with probability x;j, < y; (in case itis in some
neighborhood; otw. we open it with probability zero).

‘m EADS Il 22 Facility Location = =
©Harald Racke

What will our facility cost be?

We only try to open a facility once (when it is in neighborhood of
some ji). (recall that neighborhoods of different j, s are
disjoint).

We open facility i with probability x;j, < y; (in case itis in some
neighborhood; otw. we open it with probability zero).

Hence, the expected facility cost is at most

> fivi .

ieF

‘m EADS Il 22 Facility Location = =
©Harald Racke

Algorithm 1 FacilityLocation

1: C < D// unassigned clients

2: k<0

3: while C = 0 do

4 k—k+1

5 choose ji € C that minimizes v;‘ + C;f

6: choose iy € N(jk) according to probability x;j, .

7 assign jx and all unassigned clients in N2(j) to ix
8 C — C - {jk} = N2(jix)

T

EADS Il 22 Facility Location =)
©Harald Racke

Total assignment cost:

» Fix k; set j = ji.

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

Total assignment cost:
» Fix k; set j = ji.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Z CUxijk tChj + Cpy
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Docijx +cnj+ e <Cr+vi+v)
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Summing this over all clients gives that the total assignment cost
is at most
* * *
ZCJ. + ZZvj < ZCJ. +20PT
J J J

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Dociixl +cnjt+ o <Cr+vi+vl <Cp+2v)
i

Summing this over all clients gives that the total assignment cost
is at most

Z Ci + Z 2vf < Z Cj +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

Total assignment cost:
> Fix k; set j = jk.
» Let £ € N2(j) and h (one of) its neighbour(s) in N(j).

» If we assign a client £ to the same facility as i we pay at
most

Docijxl +enjt+ e <Cr+vi+vl <Cp+2vf
i
Summing this over all clients gives that the total assignment cost

is at most
Z Ci + Z 2vf < Z Cj +20PT
J J J

Hence, it is at most 20PT plus the total assignment cost in an
optimum solution.

Adding the facility cost gives a 3-approximation.

	Organizational Matters
	Contents
	Literatur

	Linear Programming
	Introduction
	Simplex Algorithm
	Duality
	Weak Duality
	Simplex and Duality
	Strong Duality A
	Strong Duality B
	Interpretation of Dual Variables
	Computing Duals

	Degeneracy Revisited
	Klee Minty Cube
	Seidels LP-algorithm
	The Ellipsoid Algorithm
	Karmarkars Algorithm

	Approximation Algorithms
	Introduction
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines: Local Search
	Scheduling on Identical Machines: Greedy
	TSP
	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	Integer Multicommodity Flows
	Chernoff Bounds

	MAXSAT
	Primal Dual Revisited
	Cuts & Metrics
	Facility Location

