Parallel Algorithms

Due date: December 13th, 2014 before class!

Problem 1 (10 Points)

Given the n-dimensional hypercube, find and prove the following:

- (i) the number of vertices,
- (ii) the number of edges,
- (iii) the diameter,
- (iv) the bisection width (the bisection width is the minimal number of edges which have to be cut to create two networks with 2^{n-1} vertices each).

Problem 2 (10 Points)

How many disjoint s-dimensional hypercubes are contained in an r-dimensional cube for $r \ge s$? (For example, a two-dimensional cube contains two one-dimensional cubes.)

Problem 3 (10 Points)

Define a bisection as a cut of a graph, i.e. a subset of nodes or edges, such that the graph is partitioned into two equally sized parts.

Given an *d*-dimensional hypercube, show that the removal of the nodes with size $\left\lfloor \frac{d}{2} \right\rfloor$ and size $\left\lfloor \frac{d}{2} \right\rfloor$ (i.e. nodes with that many 1s) results in a bisection containing $\Theta\left(\frac{2^d}{\sqrt{d}}\right)$ nodes.

Problem 4 (10 Points)

Let u and v be nodes of the d-dimensional hypercube, and let u_1, u_2, \ldots, u_d and v_1, v_2, \ldots, v_d denote their neighbors, respectively. Let π be any permutation on $\{1, 2, \ldots, d\}$. Show that there is an automorphism of the hypercube σ such that $\sigma(u) = v$ and $\sigma(u_i) = v_{\pi(i)}$ for $1 \leq i \leq d$.

Hint: An *automorphism* of a graph is a one-to-one mapping of the nodes to the nodes such that edges are mapped to edges.