Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Harald Räcke Chris Pinkau

Parallel Algorithms

Due date: December 8th, 2014 before class!

Problem 1 (10 Points)

The 1-color minimization problem is described as follows: Given a set of n processors P_i each having a color $x_i \in \{0, 1\}$ in its local memory, each processor P_i is supposed to compute the value $a_i \in \{0, 1\}$ such that $a_i = 1$ if and only if P_i is the lowest-indexed processor with $x_i = 1$. On problem set 1 we have seen how to solve this problem in $\mathcal{O}(1)$ time on the common CRCW when no restrictions are placed on the size of the shared memory. Show that the 1-color minimization problem can be solved in $\mathcal{O}\left(\frac{\log n}{\log(m+1)}\right)$ time on common(m).

Problem 2 (10 Points)

Show that $\operatorname{common}(m)$ can simulate one step of $\operatorname{priority}(m)$ in $\mathcal{O}(\log n)$ steps.

Problem 3 (10 Points)

The purpose of this exercise is to show that the Boolean OR function of n variables can be computed by an n-processor CREW PRAM in $\leq \log_{2.618} n + \mathcal{O}(1)$ steps, which is less than $\log_2 n$.

Let the input bits x_1, \ldots, x_n be stored in $M(1), \ldots, M(n)$ of the global memory, and let $n = F_{2T+1}$, where F_i is the *i*th Fibonacci number with $F_0 = 0$, $F_1 = 1$, and $F_{m+2} = F_{m+1} + F_m$ for $m \ge 0$. Each processor P_i uses two variables y_i and t, initially set to 0. The algorithm executed by P_i is the following:

- if $i + F_{2t} \leq n$ then $y_i \leftarrow y_i \lor M(i + F_{2t})$
- if $(i > F_{2t+1} \text{ and } y_i = 1)$ then $M(i F_{2t+1}) \leftarrow 1$
- 1. Show that, just before step t, we have $y_i = x_i \lor x_{i+1} \lor \cdots \lor x_{i+F_{2t}-1}$ and $M(i) = x_i \lor x_{i+1} \lor \cdots \lor x_{i+F_{2t+1}-1}$ for $1 \le i \le n$.
- 2. Deduce that the algorithm uses at most $\log_{2.618} n + \mathcal{O}(1)$ steps.