

- There is an *n*-ary version of the Benes network (2 *n*-ary butterflies glued at level 0).
- identifying levels 0 and 1 (or 0 and -1) gives PN(n, d).

• edge set $E = \{\{(x_0, \dots, x_i, \dots, x_{d-1}), (x_0, \dots, x_i + 1, \dots, x_{d-1})\} \mid$ $x_s \in [n]$ for $s \in [d] \setminus \{i\}, x_i \in [n-1]\}$

Permutation Routing

Lemma 1

On the linear array M(n, 1) any permutation can be routed online in 2n steps with buffersize 3.

PA ©Harald Räcke

11 Some Networks

Remarks	
M(2, d) is also called <i>d</i> -dimensional hypercube.	
M(n, 1) is also called linear array of length n .	
PA 11 Some Networks © Harald Räcke	210

Recursive Beneš Network

Permutation Routing

base case d = 0trivial

induction step $d \rightarrow d + 1$

- The packets that start at (ā, d) and (ā(d), d) have to be sent into different sub-networks.
- ► The packets that end at (ā, -d) and (ā(d), -d) have to come out of different sub-networks.

We can generate a graph on the set of packets.

- Every packet has an incident source edge (connecting it to the conflicting start packet)
- Every packet has an incident target edge (connecting it to the conflicting packet at its target)
- This clearly gives a bipartite graph; Coloring this graph tells us which packet to send into which sub-network.

Permutation Routing on the n-ary Beneš Network

Instead of two we have *n* sub-networks B(n, d - 1).

All packets starting at positions $\{(x_0, \ldots, x_{d-2}, x_{d-1}, d) \mid x_{d-1} \in [n]\}$ have to be send to different sub-networks.

All packets ending at positions $\{(x_0, \ldots, x_{d-2}, x_{d-1}, d) \mid x_{d-1} \in [n]\}$ have to come from different sub-networks.

The conflict graph is an n-uniform 2-regular hypergraph.

We can color such a graph with n colors such that no two nodes in a hyperedge share a color.

This gives the routing.

Lemma 3

On a d-dimensional mesh with sidelength n we can route any permutation (offline) in 4dn steps.

We can simulate the algorithm for the *n*-ary Beneš Network.

Each step can be simulated by routing on disjoint linear arrays. This takes at most 2n steps.

	11 Some Networks
PA ©Harald Räcke	TT Some Networks

Lemma 4

We can route any permutation on the Beneš network in $\mathcal{O}(d)$ steps with constant buffer size.

The same is true for the butterfly network.

We simulate the behaviour	of the	Beneš	network	on	the
<i>n</i> -dimensional mesh.					

In round $r \in \{-d, ..., -1, 0, 1, ..., d - 1\}$ we simulate the step of sending from level r of the Beneš network to level r + 1.

Each node $\bar{x} \in [n]^d$ of the mesh simulates the node (r, \bar{x}) .

Hence, if in the Beneš network we send from (r, \bar{x}) to $(r + 1, \bar{x}')$ we have to send from \bar{x} to \bar{x}' in the mesh.

All communication is performed along linear arrays. In round r < 0 the linear arrays along dimension -r - 1 (recall that dimensions are numbered from 0 to d - 1) are used

$$\bar{x}_{d-1}\ldots \bar{x}_{-r} \alpha \bar{x}_{-r-2}\ldots \bar{x}_0$$

In rounds $r \ge 0$ linear arrays along dimension r are used.

Hence, we can perform a round in O(n) steps.

The nodes are of the form $(\ell, \bar{x}), \bar{x} \in [n]^d, \ell \in -d, \dots, d$.

We can view nodes with same first coordinate forming columns and nodes with the same second coordinate as forming rows. This gives rows of length 2d - 1 and columns of length n^d .

We route in 3 phases:

PA ©Harald Räcke

- 1. Permute packets along the rows such that afterwards no column contains packets that have the same target row. O(d) steps.
- 2. We can use pipeling to permute **every** column, so that afterwards every packet is in its target row. O(2d + 2d) steps.
- **3.** Every packet is in its target row. Permute packets to their right destinations. O(d) steps.

Lemma 5

We can do offline permutation routing of (partial) permutations in 2*d* steps on the hypercube.

Lemma 6

We can sort on the hypercube M(2, d) in $O(d^2)$ steps.

Lemma 7

We can do online permutation routing of permutations in $\mathcal{O}(d^2)$ steps on the hypercube.

PA	
© Harald	Räcke

11 Some Networks

221

223

ASCEND/DESCEND Programs Algorithm 11 ASCEND(procedure oper) 1: for dim = 0 to d - 1for all $\bar{a} \in [2]^d$ pardo 2: $oper(\bar{a}, \bar{a}(dim), dim)$ 3: Algorithm 11 DESCEND(procedure *oper*) 1: **for** dim = d - 1 **to** 0 for all $\bar{a} \in [2]^d$ pardo 2: $oper(\bar{a}, \bar{a}(dim), dim)$ 3: oper should only depend on the dimension and on values stored in the respective processor pair $(\bar{a}, \bar{a}(dim), V[\bar{a}], V[\bar{a}(dim)])$. oper should take constant time. 11 Some Networks PA

Bitonic Sorter S_d

Algorithm 11 oper $(a, a', dim, T_a, T_{a'})$ 1: **if** $a_{dim}, ..., a_0 = 0^{dim+1}$ then $T_a = \min\{T_a, T_{a'}\}$ 2:

Performing an ASCEND run with this operation computes the minimum in processor 0.

We can sort on M(2, d) by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run followed by an ASCEND run.

The CCC network is obtained from a hypercube by replacing every node by a cycle of degree d.

- nodes $\{(\ell, \bar{x}) \mid \bar{x} \in [2]^d, \ell \in [d]\}$
- edges $\{\{(\ell, \bar{x}), (\ell, \bar{x}(\ell)\} \mid x \in [2]^d, \ell \in [d]\}$

constand degree		
© Harald Räcke	11 Some Networks	226

The shuffle exchange network SE(d) is defined as follows

- nodes: $V = [2]^d$
- edges: $E = \left\{ \{ x \bar{\alpha}, \bar{\alpha} x \} \mid x \in [2], \bar{\alpha} \in [2]^{d-1} \right\} \cup \left\{ \{ \bar{\alpha} 0, \bar{\alpha} 1 \} \mid \bar{\alpha} \in [2]^{d-1} \right\}$

constand degree

PA © Harald Räcke

Edges of the first type are called shuffle edges. Edges of the second type are called exchange edges

Lemma 8

Let $d = 2^k$. An ASCEND run of a hypercube M(2, d + k) can be simulated on CCC(d) in O(d) steps.

PA	
© Harald	Räcke

Shuffle Exchange Networks

Simulations between Networks

For the following observations we need to make the definition of parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.

In addition each processor has a read register and a write register.

In one (synchronous) step each neighbour of a processor P_i can write into P_i 's write register or can read from P_i 's read register.

Usually we assume that proper care has to be taken to avoid concurrent reads and concurrent writes from/to the same register.

Simulations between Networks

Definition 10

PA © Harald Räcke

A configuration C_i of processor P_i is the complete description of the state of P_i including local memory, program counter, read-register, write-register, etc.

Suppose a machine *M* is in configuration $(C_0, ..., C_{p-1})$, performs *t* synchronous steps, and is then in configuration $C = (C'_0, ..., C'_{p-1})$.

 C'_i is called the *t*-th successor configuration of *C* for processor *i*.

Simulations between Networks

Definition 11

Let $C = (C_0, ..., C_{p-1})$ a configuration of M. A machine M' with $q \ge p$ processors weakly simulates t steps of M with slowdown k if

- ▶ in the beginning there are p non-empty processors sets $A_0, \ldots, A_{p-1} \subseteq M'$ so that all processors in A_i know C_i ;
- after at most k · t steps of M' there is a processor Q⁽ⁱ⁾ that knows the t-th successors configuration of C for processor P_i.

	11 Some Networks	
UUU©Harald Räcke		233

We have seen how to simulate an ASCEND/DESCEND run of the hypercube M(2, d + k) on CCC(d) with $d = 2^k$ in O(d) steps.

Hence, we can simulate d + k steps (one ASCEND run) of the hypercube in O(d) steps. This means slowdown O(1).

Simulations between Networks

Definition 12

M' simulates M with slowdown k if

- M' weakly simulates machine M with slowdown k
- and every processor in A_i knows the t-th successor configuration of C for processor P_i.

PA © Harald Räcke 11 Some Networks

Lemma 13

PA © Harald Räcke

Suppose a network S with n processors can route any permutation in time O(t(n)). Then S can simulate any constant degree network M with at most n vertices with slowdown O(t(n)).

Map the vertices of M to vertices of S in an arbitrary way.

Color the edges of M with $\Delta + 1$ colors, where $\Delta = O(1)$ denotes the maximum degree.

Each color gives rise to a permutation.

We can route this permutation in S in t(n) steps.

Hence, we can perform the required communication for one step of *M* by routing $\Delta + 1$ permutations in *S*. This takes time t(n).

A processor of M is simulated by the same processor of S throughout the simulation.

חח PA 11 Some Networks	
UUU G Harald Räcke	11 Some Networks

Lemma 15

There is a constant degree network on $\mathcal{O}(n^{1+\epsilon})$ nodes that can simulate any constant degree network with slowdown $\mathcal{O}(1)$.

Lemma 14

Suppose a network S with n processors can sort n numbers in time O(t(n)). Then S can simulate any network M with at most n vertices with slowdown O(t(n)).

PA © Harald Räcke 11 Some Networks

238

Suppose we allow concurrent reads, this means in every step all neighbours of a processor P_i can read P_i 's read register.

Lemma 16

PA © Harald Räcke

A constant degree network *M* that can simulate any *n*-node network has slowdown $\Omega(\log n)$ (independent of the size of *M*).

239

We show the lemma for the following type of simulation.

- There are representative sets A^t_i for every step t that specify which processors of M simulate processor P_i in step t (know the configuration of P_i after the t-th step).
- The representative sets for different processors are disjoint.
- for all $i \in \{1, ..., n\}$ and steps $t, A_i^t \neq \emptyset$.

This is a step-by-step simulation.

	11 Some Networks	
UUU© Harald Räcke		241

We show

- The simulation of a step takes at least time $\gamma \log n$, or
- the size of the representative sets shrinks by a lot

$$\sum_{i} |A_i^{t+1}| \le \frac{1}{n^{\epsilon}} \sum_{i} |A_i^t|$$

Suppose processor P_i reads from processor P_{j_i} in step t.

Every processor $Q \in M$ with $Q \in A_i^{t+1}$ must have a path to a processor $Q' \in A_i^t$ and to $Q'' \in A_{j_i}^t$.

Let k_t be the largest distance (maximized over all i, j_i).

Then the simulation of step t takes time at least k_t .

The slowdown is at least

$$k = \frac{1}{\ell} \sum_{t=1}^{\ell} k_t$$

PA © Harald Räcke

PA © Harald Räcke 11 Some Networks

242

Suppose there is no pair (i, j) such that i reading from j requires time $\gamma \log n$.

- For every *i* the set $\Gamma_{2k}(A_i)$ contains a node from A_j .
- Hence, there must exist a j_i such that $\Gamma_{2k}(A_i)$ contains at most

$$|C_{j_i}| := \frac{|A_i| \cdot c^{2k}}{n-1} \le \frac{|A_i| \cdot c^{3k}}{n}$$
.

processors from $|A_{j_i}|$

PA © Harald Räcke 11 Some Networks

If we choose that *i* reads from j_i we get

$$|A'_{i}| \leq |C_{j_{i}}| \cdot c^{k}$$
$$\leq c^{k} \cdot \frac{|A_{i}| \cdot c^{3k}}{n}$$
$$= \frac{1}{n} |A_{i}| \cdot c^{4k}$$

Choosing $k = \Theta(\log n)$ gives that this is at most $|A_i|/n^{\epsilon}$.

	11 Some Networks	
UUU©Harald Räcke		245

$$n \le h_{\ell} \le h_0 \Big(rac{1}{n^{\epsilon}}\Big)^s \prod_{t \in \mathrm{long}} c^{k_t+1} \le rac{n}{n^{\epsilon s}} \cdot c^{\ell + \sum_t k_t}$$

If $\sum_{t} k_t \ge \ell(\frac{\epsilon}{2} \log_c n - 1)$, we are done. Otw.

$$n \le n^{1-\epsilon s+\ell \frac{d}{2}}$$

This gives $s \leq \ell/2$.

Hence, at most 50% of the steps are short.

PA © Harald Räcke

11 Some Networks

247

Let ℓ be the total number of steps and *s* be the number of short steps when $k_t < \gamma \log n$.

In a step of time k_t a representative set can at most increase by c^{k_t+1} .

Let h_{ℓ} denote the number of representatives after step ℓ .

PA ©Harald Räcke

11 Some Networks

Deterministic Online Routing

Definition 18 (Oblivious Routing)

Specify a path-system \mathcal{W} with a path $P_{u,v}$ between u and v for every pair $\{u, v\} \in V \times V$.

A packet with source u and destination v moves along path $P_{u,v}$.

PA ©Harald Räcke 11 Some Networks

249

Deterministic Online Routing

Definition 22 (dilation)

For a given path system the dilation is the maximum length of a path.

Deterministic Online Routing

Definition 19 (Oblivious Routing)

Specify a path-system \mathcal{W} with a path $P_{u,v}$ between u and v for every pair $\{u, v\} \in V \times V$.

Definition 20 (node congestion)

For a given path-system the node congestion is the maximum number of path that go through any node $v \in V$.

Definition 21 (edge congestion)

For a given path-system the edge congestion is the maximum number of path that go through any edge $e \in E$.

PA © Harald Räcke 11 Some Networks

250

Lemma 23

Any oblivious routing protocol requires at least $\max\{C_f, D_f\}$ steps, where C_f and D_f , are the congestion and dilation, respectively, of the path-system used. (node congestion or edge congestion depending on the communication model)

Lemma 24

PA © Harald Räcke

Any reasonable oblivious routing protocol requires at most $\mathcal{O}(D_f \cdot C_f)$ steps (unbounded buffers).

Theorem 25 (Borodin, Hopcroft)

For any path system W there exists a permutation $\pi : V \to V$ and an edge $e \in E$ such that at least $\Omega(\sqrt{n}/\Delta)$ of the paths go through e.

	11 Some Networks	
UUU©Harald Räcke		253

For any node v there are many edges that are are quite popular for v.

 $|V| \times |E|$ -matrix A(z):

$$A_{v,e}(z) = \begin{cases} 1 & e \text{ is } z \text{-popular for } v \\ 0 & \text{otherwise} \end{cases}$$

Define

PA ©Harald Räcke

$$A_{v}(z) = \sum_{e} A_{v,e}(z)$$
$$A_{e}(z) = \sum_{v} A_{v,e}(z)$$

11 Some Networks

Let $\mathcal{W}_{v} = \{P_{v,u} \mid u \in V\}.$

 \mathcal{W}_{v} contain *e*.

11 Some Networks

We say that an edge e is *z*-popular for v if at least *z* paths from

Lemma 26 Let $z \leq \frac{n-1}{\Delta}$.

For every node $v \in V$ there exist at least $\frac{n}{2\Delta z}$ edges that are z popular for v. This means

$$A_{v}(z) \ge \frac{n}{2\Delta z}$$

PA © Harald Räcke

255

11 Some Networks

Lemma 27

There exists an edge e' that is z-popular for at least z nodes with $z = \Omega(\sqrt{n}\Delta)$.

$$\sum_e A_e(z) = \sum_v A_v(z) \geq \frac{n^2}{2\Delta z}$$

There must exist an edge e'

$$A_{e'}(z) \geq \left\lceil \frac{n^2}{|E| \cdot 2\Delta z} \right\rceil \geq \left\lceil \frac{n}{2\Delta^2 z} \right\rceil$$

where the last step follows from $|E| \leq \Delta n$.

PA Marald Päcka	11 Some Networks	
🛛 💾 🛛 🖉 🤅 Harald Räcke		257

Deterministic oblivious routing may perform very poorly.

What happens if we have a random routing problem in a butterfly?

We choose z such that $z = \frac{n}{2\Delta^2 z}$ (i.e., $z = \sqrt{n}/(\sqrt{2}\Delta)$).

This means e' is [z]-popular for [z] nodes.

We can construct a permutation such that z paths go through e'.

PA ©Harald Räcke

PA © Harald Räcke 11 Some Networks

Suppose every source on level 0 has p packets, that are routed to random destinations. How many packets go over node v on level i? From v we can reach $2^d/2^i$ different targets. Hence, $\Pr[\operatorname{packet} \operatorname{goes} \operatorname{over} v] \leq \frac{2^{d-i}}{2^d} = \frac{1}{2^i}$

PA © Harald Räcke

Expected number of packets:

E[packets over
$$v$$
] = $p \cdot 2^i \cdot \frac{1}{2^i} = p$

since only $p2^i$ packets can reach v.

But this is trivial.

PA © Harald Räcke

PA 11 Some Networks © Harald Räcke

 $\Pr[\text{there exists a node } v \text{ sucht that at least } r \text{ path through } v]$

$$\leq d2^d \cdot \left(\frac{pe}{r}\right)^2$$

Choose r as $2ep + (\ell + 1)d + \log d = \mathcal{O}(p + \log N)$, where N is number of sources in BF(d).

Pr[exists node v with more than r paths over v] $\leq \frac{1}{N^{\ell}}$

11 Some Networks

What is the probability that at least r packets go through v.

$$\Pr[\text{at least } r \text{ path through } v] \le {\binom{p \cdot 2^i}{r}} \cdot \left(\frac{1}{2^i}\right)^r$$
$$\le \left(\frac{p2^i \cdot e}{r}\right)^r \cdot \left(\frac{1}{2^i}\right)$$
$$= \left(\frac{pe}{r}\right)^r$$

Pr[there exists a node v sucht that at least r path through v]

$$\leq d2^d \cdot \left(\frac{pe}{r}\right)^r$$

PA © Harald Räcke

261

263

11 Some Networks

Scheduling Packets Assume that in every round a node may forward at most one packet but may receive up to two. We select a random rank $R_p \in [k]$. Whenever, we forward a packet we choose the packet with smaller rank. Ties are broken according to packet id. Random Rank Protocol

PA © Harald Räcke

Definition 28 (Delay Sequence of length *s***)**

- \blacktriangleright delay path ${\mathcal W}$
- lengths $\ell_0, \ell_1, \dots, \ell_s$, with $\ell_0 \ge 1, \ell_1, \dots, \ell_s \ge 0$ lengths of delay-free sub-paths
- collision nodes $v_0, v_1, \ldots, v_s, v_{s+1}$
- collision packets P_0, \ldots, P_s

	11 Some Networks	
UUU © Harald Räcke		265

Definition 29 (Formal Delay Sequence)

- a path \mathcal{W} of length d from a source to a target
- *s* integers $\ell_0 \ge 1$, $\ell_1, \ldots, \ell_s \ge 0$ and $\sum_{i=0}^s \ell_i = d$
- nodes $v_0, \ldots v_s, v_{s+1}$ on \mathcal{W} with v_i being on level $d \ell_0 \cdots \ell_{i-1}$
- s + 1 packets P_0, \ldots, P_s , where P_i is a packet with path through v_i and v_{i-1}
- numbers $R_s \leq R_{s-1} \leq \cdots \leq R_0$

Properties

PA © Harald Räcke

- $\operatorname{rank}(P_0) \ge \operatorname{rank}(P_1) \ge \cdots \ge \operatorname{rank}(P_s)$
- $\blacktriangleright \sum_{i=0}^{s} \ell_i = d$
- if the routing takes d + s steps than the delay sequence has length s

PA 11 Some Networks © Harald Räcke

We say a formal delay sequence is active if $rank(P_i) = k_i$ holds for all *i*.

Let $N_{\mathcal{S}}$ be the number of formal delay sequences of length at most $\mathcal{S}.$ Then

 $\Pr[\text{routing needs at least } d + s \text{ steps}] \le \frac{N_s}{k^{s+1}}$

$$N_{s} \leq \left(\frac{2eC(s+k)}{s+1}\right)^{s+1}$$

 \blacktriangleright there are N^2 ways to choose $\mathcal W$

• there are
$$\binom{s+d-1}{s}$$
 ways to choose ℓ_i 's with $\sum_{i=0}^s \ell_i = d$

- the collision nodes are fixed
- there are at most C^{s+1} ways to choose the collision packets where C is the node congestion
- there are at most $\binom{s+k}{s+1}$ ways to choose $0 \le k_s \le \cdots \le k_0 < k$

הם הר	PA
	PA © Harald Räcke

11 Some Networks

269

- With probability $1 \frac{1}{N^{\ell_1}}$ the random routing problem has congestion at most $\mathcal{O}(p + \ell_1 d)$.
- With probability $1 \frac{1}{N^{\ell_2}}$ the packet scheduling finishes in at most $\mathcal{O}(C + \ell_2 d)$ steps.

Hence, with high probability routing random problems with p packets per source in a butterfly requires only O(p + d) steps.

What do we do for arbitrary routing problems?

Hence the probability that the routing takes more than d + s steps is at most

$$N^3 \cdot \left(\frac{2e \cdot C \cdot (s+k)}{(s+1)k}\right)^{s+1}$$

We choose $s = 8eC - 1 + (\ell + 3)d$ and k = s + 1. This gives that the probability is at most $\frac{1}{N^{\ell}}$.

PA © Harald Räcke

11 Some Networks

Choose paths as follows:

- route from source to random destination on target level
- route to real target column (albeit on source level)
- route to target

PA ©Harald Räcke

All phases run in time $\mathcal{O}(p+d)$ with high probability.

Valiants Trick

Multicommodity Flow Problem

- undirected (weighted) graph G = (V, E, c)
- commodities $(s_i, t_i), i \in \{1, \dots, k\}$
- a multicommodity flow is a flow $f: E \times \{1, \dots, k\} \rightarrow \mathbb{R}^+$
 - for all edges $e \in E$: $\sum_i f_i(e) \le c(e)$
 - ► for all nodes $v \in V \setminus \{s_i, t_i\}$: $\sum_{u:(u,v)\in E} f_i((u,v)) = \sum_{w:(v,w)\in E} f_i((v,w))$

Goal A (Maximum Multicommodity Flow) maximize $\sum_{i} \sum_{e=(s_i,x) \in E} f_i(e)$

Goal B (Maximum Concurrent Multicommodity Flow)

maximize $\min_i \sum_{e=(s_i,x)\in E} f_i(e)/d_i$ (throughput fraction), where d_i is demand for commodity i

PA ©Harald Räcke	11 Some Networks

Valiants Trick

For a multicommodity flow S we assume that we have a decomposition of the flow(s) into flow-paths.

We use C(S) to denote the congestion of the flow problem (inverse of througput fraction), and D(S) the length of the longest routing path.

Valiants Trick

A Balanced Multicommodity Flow Problem is a concurrent multicommodity flow problem in which incoming and outgoing flow is equal to

$$c(v) = \sum_{e=(v,x)\in E} c(e)$$

PA © Harald Räcke

PA ©Harald Räcke 11 Some Networks

For a network G = (V, E, c) we define the characteristic flow problem via

• demands $d_{u,v} = \frac{c(u)c(v)}{c(V)}$

Suppose the characteristic flow problem has a solution S with $C(S) \le F$ and $D(S) \le F$.

273

Definition 31

A (randomized) oblivious routing scheme is given by a path system $\mathcal P$ and a weight function w such that

$$\sum_{p\in \mathcal{P}_{s,t}}w(p) =$$

ГΠ	1	PA © Harald	
		© Harald	Räcke

11 Some Networks

1

277

Construct an oblivious routing scheme from *S* as follows:

• let $f_{x,y}$ be the flow between x and y in S

$$f_{x,y} \ge d_{x,y}/C(S) \ge d_{x,y}/F = \frac{1}{F} \frac{c(x)c(y)}{c(V)}$$

• for $p \in \mathcal{P}_{x,y}$ set $w(p) = f_p/f_{x,y}$

gives an oblivious routing scheme.

PA © Harald Räcke 11 Some Networks

Oblivious Routing for the Mesh

We can route any permutation on an $n \times n$ mesh in $\mathcal{O}(n)$ steps, by *x*-*y* routing. Actually $\mathcal{O}(d)$ steps where *d* is the largest distance between a source-target pair.

What happens if we do not have a permutation?

x - y routing may generate large congestion if some pairs have a lot of packets.

Valiants trick may create a large dilation.

Let for a multicommodity flow problem $P C_{opt}(P)$ be the optimum congestion, and $D_{opt}(P)$ be the optimum dilation (by perhaps different flow solutions).

Lemma 32

PA ©Harald Räcke

There is an oblivious routing scheme for the mesh that obtains a flow solution S with $C(S) = O(C_{opt}(P) \log n)$ and $D(S) = O(D_{opt}(P))$.

PA ©Harald Räcke	11 Some Networks
🛛 🕒 🛛 🖉 🛛 🖓 🖓 🖓 🖉 🖉 🖉	

281

11 Some Networks

282

Lemma 33

For any oblivious routing scheme on the mesh there is a demand *P* such that routing *P* will give congestion $\Omega(\log n \cdot C_{opt})$.

PA	
© Harald	Räcke