Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with $oldsymbol{p}$ processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $\mathcal{O}(\log n - \log p)$ with p processors even if there are p copies of the search key.

Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $\mathcal{O}(\log n - \log p)$ with p processors even if there are p copies of the search key.

Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $\mathcal{O}(\log n - \log p)$ with p processors even if there are p copies of the search key.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X=(x_1,\ldots,x_t)$ be a sequence. The rank $\mathrm{rank}(y:X)$ of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_t)$ be a sequence. The rank $\operatorname{rank}(y : X)$ of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_t)$ be a sequence. The rank $\operatorname{rank}(y : X)$ of y in X is

$$rank(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define $\operatorname{rank}(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

We have already seen a merging-algorithm that runs in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Using the fast search algorithm we can improve this to a running time of $O(\log \log n)$ and work $O(n \log \log n)$.

We have already seen a merging-algorithm that runs in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Using the fast search algorithm we can improve this to a running time of $\mathcal{O}(\log\log n)$ and work $\mathcal{O}(n\log\log n)$.

Input:
$$A = a_1, ..., a_n$$
; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of B, using the parallel search algorithm with p processors. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(n)$.
- 2. Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \ldots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(\sqrt{m} \cdot \sqrt{n}) = \mathcal{O}(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}} : A)$$

- 3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.
 - Recursively compute $rank(B_i : A_i)$.
- **4.** Let k be index not a multiple of \sqrt{m} . $i = \lceil \frac{k}{\sqrt{m}} \rceil$. Ther $\operatorname{rank}(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

Input:
$$A = a_1, ..., a_n$$
; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of B, using the parallel search algorithm with p processors. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(n)$.
- 2. Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \ldots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(\sqrt{m} \cdot \sqrt{n}) = \mathcal{O}(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}} : A)$$

- 3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.
 - Recursively compute $rank(B_i : A_i)$.
- **4.** Let k be index not a multiple of \sqrt{m} . $i = \lceil \frac{k}{\sqrt{m}} \rceil$. Then $\operatorname{rank}(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

Input:
$$A = a_1, ..., a_n$$
; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of B, using the parallel search algorithm with p processors. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(n)$.
- 2. Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \ldots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(\sqrt{m} \cdot \sqrt{n}) = \mathcal{O}(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}} : A)$$

3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1});$ and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)}).$

Recursively compute $rank(B_i : A_i)$.

4. Let k be index not a multiple of \sqrt{m} . $i = \lceil \frac{k}{\sqrt{m}} \rceil$. Ther $\operatorname{rank}(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

Input:
$$A = a_1, ..., a_n$$
; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of B, using the parallel search algorithm with p processors. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(n)$.
- 2. Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \ldots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: $\mathcal{O}(1)$. Work: $\mathcal{O}(\sqrt{m} \cdot \sqrt{n}) = \mathcal{O}(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}} : A)$$

3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1});$ and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)}).$

Recursively compute $rank(B_i : A_i)$.

4. Let k be index not a multiple of \sqrt{m} . $i = \lceil \frac{k}{\sqrt{m}} \rceil$. Then $\operatorname{rank}(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

The algorithm can be made work-optimal by standard techniques.

proof on board...

Lemma 2

A straightforward parallelization of Mergesort can be implemented in time $O(\log n \log \log n)$ and with work $O(n \log n)$.

This assumes the CREW-PRAM model.

Lemma 2

A straightforward parallelization of Mergesort can be implemented in time $O(\log n \log \log n)$ and with work $O(n \log n)$.

This assumes the CREW-PRAM model.

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $\mathcal{O}(h\log\log n)$ and work $\mathcal{O}(hn)$, where $h=\mathcal{O}(\log n)$ is the height of the tree.

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $\mathcal{O}(h\log\log n)$ and work $\mathcal{O}(hn)$, where $h=\mathcal{O}(\log n)$ is the height of the tree.

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $\mathcal{O}(h\log\log n)$ and work $\mathcal{O}(hn)$, where $h=\mathcal{O}(\log n)$ is the height of the tree.

We again compute L[v] for every node in the complete binary tree.

After round s, $L_s[v]$ is an **approximation** of L[v] that will be improved in future rounds.

For $s \ge 3 \operatorname{height}(v)$, $L_s[v] = L[v]$.

We again compute L[v] for every node in the complete binary tree.

After round s, $L_s[v]$ is an **approximation** of L[v] that will be improved in future rounds.

For $s \ge 3$ height(v), $L_s[v] = L[v]$.

We again compute L[v] for every node in the complete binary tree.

After round s, $L_s[v]$ is an **approximation** of L[v] that will be improved in future rounds.

For $s \ge 3 \operatorname{height}(v)$, $L_s[v] = L[v]$.

In every round, a node v sends $\mathrm{sample}(L_s[v])$ (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

In every round, a node v sends $\mathrm{sample}(L_s[v])$ (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

In every round, a node v sends $\mathrm{sample}(L_s[v])$ (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if $s \le 3 \operatorname{height}(v)$ (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).


```
Algorithm 11 ColeSort()

1: initialize L_0[v] = A_v for leaf nodes; L_0[v] = \emptyset otw.

2: for s \leftarrow 1 to 3 \cdot \text{height}(T) do

3: for all active nodes v do

4: //u and w children of v

5: L'_s[u] \leftarrow \text{sample}(L_{s-1}[u])

6: L'_s[w] \leftarrow \text{sample}(L_{s-1}[w])

7: L_s[v] \leftarrow \text{merge}(L'_s[u], L'_s[w])
```

```
\operatorname{sample}(L_{s}[v]) = \begin{cases} \operatorname{sample}_{4}(L_{s}[v]) & s \leq 3 \operatorname{height}(v) \\ \operatorname{sample}_{2}(L_{s}[v]) & s = 3 \operatorname{height}(v) + 1 \\ \operatorname{sample}_{1}(L_{s}[v]) & s = 3 \operatorname{height}(v) + 2 \end{cases}
```



```
Algorithm 11 ColeSort()

1: initialize L_0[v] = A_v for leaf nodes; L_0[v] = \emptyset otw.

2: for s \leftarrow 1 to 3 \cdot \text{height}(T) do

3: for all active nodes v do

4: //u and w children of v

5: L'_s[u] \leftarrow \text{sample}(L_{s-1}[u])

6: L'_s[w] \leftarrow \text{sample}(L_{s-1}[w])

7: L_s[v] \leftarrow \text{merge}(L'_s[u], L'_s[w])
```

$$\operatorname{sample}(L_s[v]) = \begin{cases} \operatorname{sample}_4(L_s[v]) & s \leq 3 \operatorname{height}(v) \\ \operatorname{sample}_2(L_s[v]) & s = 3 \operatorname{height}(v) + 1 \\ \operatorname{sample}_1(L_s[v]) & s = 3 \operatorname{height}(v) + 2 \end{cases}$$

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- fix a node v on level h+1 with children u and w
- ▶ $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- ▶ further sample($L_{3h+2}[u]$) = L[u] and sample($L_{3h+2}[v]$) = L[v]
- ▶ hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- fix a node v on level h+1 with children u and w
- ▶ $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- further sample($L_{3h+2}[u]$) = L[u] and sample($L_{3h+2}[v]$) = L[v]
- ▶ hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- fix a node v on level h+1 with children u and w
- $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- further sample($L_{3h+2}[u]$) = L[u] and sample($L_{3h+2}[v]$) = L[v]
- ▶ hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- fix a node v on level h+1 with children u and w
- ▶ $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- further sample($L_{3h+2}[u]$) = L[u] and sample($L_{3h+2}[v]$) = L[v]
- ▶ hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- fix a node v on level h+1 with children u and w
- ▶ $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- further sample($L_{3h+2}[u]$) = L[u] and sample($L_{3h+2}[v]$) = L[v]
- ▶ hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- fix a node v on level h+1 with children u and w
- ▶ $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- further sample($L_{3h+2}[u]$) = L[u] and sample($L_{3h+2}[v]$) = L[v]
- ▶ hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Lemma 4

The number of elements in lists $L_s[v]$ for active nodes v is at most O(n).

proof on board...

Definition 5

A sequence X is a c-cover of a sequence Y if for any two consecutive elements α, β from $(-\infty, X, \infty)$ the set $|\{y_i \mid \alpha \leq y_i \leq \beta\}| \leq c$.

Lemma 6

 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a,b] fulfills $|[a,b]\cap (A\cup\{-\infty,\infty\})|=k$ we say [a,b] intersects $(-\infty,A,+\infty)$ in k items.

Lemma 7

If [a,b] with $a,b \in L_s'[v] \cup \{-\infty,\infty\}$ intersects $(-\infty,L_s'[v],\infty)$ in $k \geq 2$ items, then [a,b] intersects $(-\infty,L_{s+1}',\infty)$ in at most 2k items.

Lemma 6

 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a,b] fulfills $|[a,b] \cap (A \cup \{-\infty,\infty\})| = k$ we say [a,b] intersects $(-\infty,A,+\infty)$ in k items.

Lemma 7

If [a,b] with $a,b\in L_s'[v]\cup \{-\infty,\infty\}$ intersects $(-\infty,L_s'[v],\infty)$ in $k\geq 2$ items, then [a,b] intersects $(-\infty,L_{s+1}',\infty)$ in at most 2k items.

Lemma 6

 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a,b] fulfills $|[a,b] \cap (A \cup \{-\infty,\infty\})| = k$ we say [a,b] intersects $(-\infty,A,+\infty)$ in k items.

Lemma 7

If [a,b] with $a,b \in L'_s[v] \cup \{-\infty,\infty\}$ intersects $(-\infty,L'_s[v],\infty)$ in $k \ge 2$ items, then [a,b] intersects $(-\infty,L'_{s+1},\infty)$ in at most 2k items.

Merging with a Cover

Lemma 8

Given two sorted sequences A and B. Let X be a c-cover of A and B for constant c, and let $\operatorname{rank}(X:A)$ and $\operatorname{rank}(X:B)$ be known.

We can merge A and B in time $\mathcal{O}(1)$ using $\mathcal{O}(|X|)$ operations.

Merging with a Cover

Lemma 9

Given two sorted sequences A and B. Let X be a c-cover of B for constant c, and let $\operatorname{rank}(A:X)$ and $\operatorname{rank}(X:B)$ be known.

We can compute rank(A : B) using O(|X| + |A|) operations.

Merging with a Cover

Lemma 10

Given two sorted sequences A and B. Let X be a c-cover of B for constant c, and let $\operatorname{rank}(A:X)$ and $\operatorname{rank}(X:B)$ be known.

We can compute rank(B : A) using O(|X| + |A|) operations.

Easy to do with concurrent read. Can also be done with exclusive read but non-trivial.

In order to do the merge in iteration s+1 in constant time we need to know

$$\operatorname{rank}(L_{s}[v]:L'_{s+1}[u])$$
 and $\operatorname{rank}(L_{s}[v]:L'_{s+1}[w])$

and we need to know that $L_s[v]$ is a 4-cover of $L'_{s+1}[u]$ and $L'_{s+1}[w]$.

- $L_{s}[v] \supseteq L'_{s}[u], L'_{s}[w]$
- $ightharpoonup L'_s[u]$ is 4-cover of $L'_{s+1}[u]$
- ▶ Hence, $L_s[v]$ is 4-cover of $L'_{s+1}[u]$ as adding more elements cannot destroy the cover-property.

- $L_{s}[v] \supseteq L'_{s}[u], L'_{s}[w]$
- L'_s[u] is 4-cover of $L'_{s+1}[u]$
- ▶ Hence, $L_s[v]$ is 4-cover of $L'_{s+1}[u]$ as adding more elements cannot destroy the cover-property.

- $L_{s}[v] \supseteq L'_{s}[u], L'_{s}[w]$
- $L'_s[u]$ is 4-cover of $L'_{s+1}[u]$
- ▶ Hence, $L_s[v]$ is 4-cover of $L'_{s+1}[u]$ as adding more elements cannot destroy the cover-property.

Analysis

Lemma 12

Suppose we know for every internal node v with children u and w

- ▶ $\operatorname{rank}(L'_{s}[v]:L'_{s+1}[v])$
- $ightharpoonup \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $rank(L'_{S}[w]:L'_{S}[u])$

We can compute

- $ightharpoonup rank(L'_{s+1}[v]:L'_{s+2}[v])$
- $ightharpoonup rank(L'_{s+1}[u]:L'_{s+1}[w])$
- $ightharpoonup rank(L'_{s+1}[w]:L'_{s+1}[u])$

in constant time and $O(|L_{s+1}[v]|)$ operations, where v is the parent of u and w.

- ► $rank(L'_s[u]:L'_{s+1}[u])$ (4-cover)
- $ightharpoonup \operatorname{rank}(L'_s[w]:L'_s[u])$
- $ightharpoonup \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- ► $rank(L'_s[w]: L'_{s+1}[w])$ (4-cover)

Compute

- ightharpoonup rank $(L'_{s+1}[w]:L'_s[u])$
- $\operatorname{rank}(L'_{s+1}[u]:L'_{s}[w])$

Compute

- $ightharpoonup rank(L'_{s+1}[w]:L'_{s+1}[u])$
- $ightharpoonup \operatorname{rank}(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

- ► $rank(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- $ightharpoonup \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $ightharpoonup \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- ► $rank(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute

- $ightharpoonup rank(L'_{s+1}[w]: L'_{s}[u])$
- ▶ $rank(L'_{s+1}[u]:L'_{s}[w])$

Compute

- $ightharpoonup rank(L'_{s+1}[w]:L'_{s+1}[u])$
- $ightharpoonup \operatorname{rank}(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

- ► $rank(L'_s[u]:L'_{s+1}[u])$ (4-cover)
- $ightharpoonup \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $ightharpoonup \operatorname{rank}(L'_s[u]:L'_s[w])$
- ▶ $rank(L'_s[w]:L'_{s+1}[w])$ (4-cover)

Compute

- $ightharpoonup rank(L'_{s+1}[w]:L'_{s}[u])$
- $rank(L'_{s+1}[u]:L'_s[w])$

Compute

- $ightharpoonup rank(L'_{s+1}[w]:L'_{s+1}[u])$
- $ightharpoonup rank(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

- ► $\operatorname{rank}(L'_{s}[u]: L'_{s+1}[u])$ (4-cover $\rightarrow \operatorname{rank}(L'_{s+1}[u]: L'_{s}[u])$)
- ▶ $rank(L'_{s}[w]:L'_{s+1}[u])$
- $ightharpoonup rank(L'_{s}[u]:L'_{s+1}[w])$
- ► $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover $\rightarrow \operatorname{rank}(L'_{s+1}[w]:L'_{s}[w])$)

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- $ightharpoonup \operatorname{rank}(L_{s}[v]:L'_{s+1}[u])$
- $ightharpoonup \operatorname{rank}(L_{\mathcal{S}}[v]:L'_{\mathcal{S}+1}[w])$

Compute

- ightharpoonup rank $(L_s[v]:L_{s+1}[v])$ (by adding)
- ► rank $(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

- ► $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover $\to \operatorname{rank}(L'_{s+1}[u]:L'_{s}[u])$)
- $ightharpoonup rank(L'_{s}[w]:L'_{s+1}[u])$
- $ightharpoonup rank(L'_{s}[u]:L'_{s+1}[w])$
- ► $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover $\to \operatorname{rank}(L'_{s+1}[w]:L'_{s}[w])$)

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- ightharpoonup rank $(L_s[v]:L'_{s+1}[u])$
- ightharpoonup rank $(L_s[v]:L'_{s+1}[w])$

Compute

- ► $\operatorname{rank}(L_s[v]:L_{s+1}[v])$ (by adding)
- ► rank $(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

- ► $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover $\to \operatorname{rank}(L'_{s+1}[u]:L'_{s}[u])$)
- $ightharpoonup rank(L'_{s}[w]:L'_{s+1}[u])$
- $ightharpoonup rank(L'_{s}[u]:L'_{s+1}[w])$
- ► $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover $\to \operatorname{rank}(L'_{s+1}[w]:L'_{s}[w])$)

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- ightharpoonup rank $(L_s[v]:L'_{s+1}[u])$
- ightharpoonup rank $(L_s[v]:L'_{s+1}[w])$

Compute

- rank $(L_s[v]:L_{s+1}[v])$ (by adding)
- $ightharpoonup \operatorname{rank}(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

