Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with *p* processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $O(\log n - \log p)$ with p processors even if there are p copies of the search key.

Merging

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define rank $(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

Merging

We have already seen a merging-algorithm that runs in time $O(\log n)$ and work O(n).

Using the fast search algorithm we can improve this to a running time of $O(\log \log n)$ and work $O(n \log \log n)$.

Merging

Input: $A = a_1, ..., a_n$; $B = b_1, ..., b_m$; $m \le n$

- 1. if m < 4 then rank elements of *B*, using the parallel search algorithm with *p* processors. Time: O(1). Work: O(n).
- **2.** Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \dots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: O(1). Work: $O(\sqrt{m} \cdot \sqrt{n}) = O(n)$

$$j(i) := \operatorname{rank}(b_{i\sqrt{m}}:A)$$

3. Let
$$B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$$
; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.

Recursively compute $rank(B_i : A_i)$.

4. Let *k* be index not a multiple of \sqrt{m} . $i = \lfloor \frac{k}{\sqrt{m}} \rfloor$. Then rank $(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

The algorithm can be made work-optimal by standard techniques.

proof on board ...

Mergesort

Lemma 2

A straightforward parallelization of Mergesort can be implemented in time $O(\log n \log \log n)$ and with work $O(n \log n)$.

This assumes the CREW-PRAM model.

Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $O(h \log \log n)$ and work O(hn), where $h = O(\log n)$ is the height of the tree.

We again compute L[v] for every node in the complete binary tree.

After round s, $L_s[v]$ is an **approximation** of L[v] that will be improved in future rounds.

For $s \ge 3$ height(v), $L_s[v] = L[v]$.

In every round, a node v sends sample($L_s[v]$) (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round *s* if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

Pipelined Mergesort

Algorithm 11 ColeSort()
1: initialize $L_0[v] = A_v$ for leaf nodes; $L_0[v] = \emptyset$ otw.
2: for $s \leftarrow 1$ to $3 \cdot \text{height}(T)$ do
3: for all active nodes v do
4: // u and w children of v
5: $L'_{s}[u] \leftarrow \text{sample}(L_{s-1}[u])$
6: $L'_s[w] \leftarrow \text{sample}(L_{s-1}[w])$
7: $L_{s}[v] \leftarrow \operatorname{merge}(L'_{s}[u], L'_{s}[w])$

sample(
$$L_s[v]$$
) =

$$\begin{cases}
sample_4(L_s[v]) & s \leq 3 \operatorname{height}(v) \\
sample_2(L_s[v]) & s = 3 \operatorname{height}(v) + 1 \\
sample_1(L_s[v]) & s = 3 \operatorname{height}(v) + 2
\end{cases}$$

Colesort

7 Searching and Sorting

Pipelined Mergesort

Lemma 3

After round s = 3 height(v), the list $L_s[v]$ is complete.

Proof:

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- ► further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Pipelined Mergesort

Lemma 4

The number of elements in lists $L_s[v]$ for active nodes v is at most O(n).

proof on board ...

Definition 5

A sequence *X* is a *c*-cover of a sequence *Y* if for any two consecutive elements α, β from $(-\infty, X, \infty)$ the set $|\{y_i \mid \alpha \leq y_i \leq \beta\}| \leq c$.

Pipelined Mergesort

Lemma 6 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a, b] fulfills $|[a, b] \cap (A \cup \{-\infty, \infty\})| = k$ we say [a, b]intersects $(-\infty, A, +\infty)$ in k items.

Lemma 7

If [a, b] with $a, b \in L'_{s}[v] \cup \{-\infty, \infty\}$ intersects $(-\infty, L'_{s}[v], \infty)$ in $k \ge 2$ items, then [a, b] intersects $(-\infty, L'_{s+1}, \infty)$ in at most 2k items.

Merging with a Cover

Lemma 8

Given two sorted sequences A and B. Let X be a c-cover of A and B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time $\mathcal{O}(1)$ using $\mathcal{O}(|X|)$ operations.

Merging with a Cover

Lemma 9

Given two sorted sequences A and B. Let X be a c-cover of B for constant c, and let rank(A : X) and rank(X : B) be known.

We can compute rank(A : B) using O(|X| + |A|) operations.

Merging with a Cover

Lemma 10

Given two sorted sequences A and B. Let X be a c-cover of B for constant c, and let rank(A : X) and rank(X : B) be known.

We can compute rank(B : A) using O(|X| + |A|) operations.

Easy to do with concurrent read. Can also be done with exclusive read but non-trivial.

In order to do the merge in iteration s + 1 in constant time we need to know

```
\operatorname{rank}(L_{s}[v]:L'_{s+1}[u]) and \operatorname{rank}(L_{s}[v]:L'_{s+1}[w])
```

and we need to know that $L_s[v]$ is a 4-cover of $L'_{s+1}[u]$ and $L'_{s+1}[w]$.

Lemma 11 $L_s[v]$ is a 4-cover of $L'_{s+1}[u]$ and $L'_{s+1}[w]$.

- $L_s[v] \supseteq L'_s[u], L'_s[w]$
- $L'_s[u]$ is 4-cover of $L'_{s+1}[u]$
- ► Hence, L_s[v] is 4-cover of L'_{s+1}[u] as adding more elements cannot destroy the cover-property.

Analysis

Lemma 12

Suppose we know for every internal node $\boldsymbol{\upsilon}$ with children \boldsymbol{u} and \boldsymbol{w}

- rank $(L'_{s}[v]:L'_{s+1}[v])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$

We can compute

- rank $(L'_{s+1}[v]:L'_{s+2}[v])$
- rank $(L'_{s+1}[u]: L'_{s+1}[w])$
- rank $(L'_{s+1}[w]:L'_{s+1}[u])$

in constant time and $O(|L_{s+1}[v]|)$ operations, where v is the parent of u and w.

Given

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute

- $\operatorname{rank}(L'_{s+1}[w]:L'_{s}[u])$
- $\operatorname{rank}(L'_{s+1}[u]:L'_{s}[w])$

Compute

- $\operatorname{rank}(L'_{s+1}[w]:L'_{s+1}[u])$
- $\operatorname{rank}(L'_{s+1}[u]:L'_{s+1}[w])$

ranks between siblings can be computed easily

Given

- ▶ $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover \rightarrow $\operatorname{rank}(L'_{s+1}[u]:L'_{s}[u]))$
- rank $(L'_{s}[w]:L'_{s+1}[u])$
- rank $(L'_{s}[u]:L'_{s+1}[w])$
- ▶ $\operatorname{rank}(L'_{s}[w]:L'_{s+1}[w])$ (4-cover $\rightarrow \operatorname{rank}(L'_{s+1}[w]:L'_{s}[w]))$

Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w])$)

- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[u])$
- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[w])$

Compute

- rank $(L_s[v]:L_{s+1}[v])$ (by adding)
- rank $(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

