Searching

An extension of binary search with p processors gives that one can find the rank of an element in

$$\log_{p+1}(n) = \frac{\log n}{\log(p+1)}$$

many parallel steps with *p* processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model searching cannot be done faster than $O(\log n - \log p)$ with p processors even if there are p copies of the search key.

PA ©Harald Räcke

121

Merging We have already seen a merging-algorithm that runs in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$. Using the fast search algorithm we can improve this to a running time of $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n \log \log n)$.

PA © Harald Räcke

7 Searching and Sorting

Merging

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 1

Let $X = (x_1, \dots, x_t)$ be a sequence. The rank rank(y : X) of y in X is

 $\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$

For a sequence $Y = (y_1, ..., y_s)$ we define rank $(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

PA © Harald Räcke 7 Searching and Sorting

122

Merging

Input: $A = a_1, ..., a_n$; $B = b_1, ..., b_m$; $m \le n$

- **1.** if m < 4 then rank elements of *B*, using the parallel search algorithm with *p* processors. Time: O(1). Work: O(n).
- **2.** Concurrently rank elements $b_{\sqrt{m}}, b_{2\sqrt{m}}, \dots, b_m$ in A using the parallel search algorithm with $p = \sqrt{n}$. Time: O(1). Work: $O(\sqrt{m} \cdot \sqrt{n}) = O(n)$

 $j(i) := \operatorname{rank}(b_{i\sqrt{m}}:A)$

3. Let $B_i = (b_{i\sqrt{m}+1}, \dots, b_{(i+1)\sqrt{m}-1})$; and $A_i = (a_{j(i)+1}, \dots, a_{j(i+1)})$.

Recursively compute $rank(B_i : A_i)$.

4. Let *k* be index not a multiple of \sqrt{m} . $i = \lceil \frac{k}{\sqrt{m}} \rceil$. Then rank $(b_k : A) = j(i) + \operatorname{rank}(b_k : A_i)$.

The algorithm can be made work-optimal by standard techniques.

proof on board...

PA © Harald Räcke

7 Searching and Sorting

125

Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the leaf nodes rooted at v_{\cdot}

We can view Mergesort as computing L[v] for a complete binary tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary tree can be performed in parallel we obtain time $O(h \log \log n)$ and work $\mathcal{O}(hn)$, where $h = \mathcal{O}(\log n)$ is the height of the tree.

Mergesort

Lemma 2

A straightforward parallelization of Mergesort can be implemented in time $O(\log n \log \log n)$ and with work $O(n \log n)$.

This assumes the CREW-PRAM model.

PA © Harald Räcke

7 Searching and Sorting

126

Pipelined Mergesort

In every round, a node v sends sample($L_s[v]$) (an approximation of its current list) upwards, and receives approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round *s* if $s \le 3$ height(v) (this means its list is not yet complete at the start of the round, i.e., $L_{s-1}[v] \ne L[v]$).

50 00	PA	
	© Harald	Räcke

7 Searching and Sorting

129

Pipelined Mergesort

Algorithm 11 ColeSort()			
1: initialize $L_0[v] = A_v$ for leaf nodes; $L_0[v] = \emptyset$ otw.			
2: for $s \leftarrow 1$ to $3 \cdot \text{height}(T)$ do			
3: for all active nodes <i>v</i> do			
4: // u and w children of v			
5: $L'_{s}[u] \leftarrow \text{sample}(L_{s-1}[u])$			
6: $L'_{s}[w] \leftarrow \text{sample}(L_{s-1}[w])$			
7: $L_s[v] \leftarrow \operatorname{merge}(L'_s[u], L'_s[w])$			
$\operatorname{sample}(L_{s}[v]) = \begin{cases} \operatorname{sample}_{4}(L_{s}[v]) & s \leq 3 \operatorname{height}(v) \\ \operatorname{sample}_{2}(L_{s}[v]) & s = 3 \operatorname{height}(v) + 1 \\ \operatorname{sample}_{1}(L_{s}[v]) & s = 3 \operatorname{height}(v) + 2 \end{cases}$			
PA 7 Searching and Sorting			

Pipelined Mergesort

Lemma 3

After round $s = 3 \operatorname{height}(v)$, the list $L_s[v]$ is complete.

Proof:

- clearly true for leaf nodes
- suppose it is true for all nodes up to height h;
- Fix a node v on level h + 1 with children u and w
- $L_{3h}[u]$ and $L_{3h}[w]$ are complete by induction hypothesis
- ▶ further sample(L_{3h+2}[u]) = L[u] and sample(L_{3h+2}[v]) = L[v]
- hence in round 3h + 3 node v will merge the complete list of its children; after the round L[v] will be complete

Pipelined Mergesort

Lemma 4

The number of elements in lists $L_s[v]$ for active nodes v is at most O(n).

proof on board...

PA © Harald Räcke	7 Searching and Sorting	133

Pipelined Mergesort

Lemma 6

 $L'_{s}[v]$ is a 4-cover of $L'_{s+1}[v]$.

If [a,b] fulfills $|[a,b] \cap (A \cup \{-\infty,\infty\})| = k$ we say [a,b]intersects $(-\infty, A, +\infty)$ in k items.

Lemma 7

If [a, b] with $a, b \in L'_s[v] \cup \{-\infty, \infty\}$ intersects $(-\infty, L'_s[v], \infty)$ in $k \ge 2$ items, then [a, b] intersects $(-\infty, L'_{s+1}, \infty)$ in at most 2k items.

PA	
© Harald	Räcke

7 Searching and Sorting

135

Definition 5

A sequence *X* is a *c*-cover of a sequence *Y* if for any two consecutive elements α, β from $(-\infty, X, \infty)$ the set $|\{y_i \mid \alpha \leq y_i \leq \beta\}| \leq c$.

Merging with a Cover

Lemma 8

Given two sorted sequences A and B. Let X be a c-cover of A and B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X|) operations.

PA ©Harald Räcke 7 Searching and Sorting

137

Merging with a Cover

Lemma 10

Given two sorted sequences A and B. Let X be a c-cover of B for constant c, and let rank(A : X) and rank(X : B) be known.

We can compute rank(B : A) using O(|X| + |A|) operations.

Easy to do with concurrent read. Can also be done with exclusive read but non-trivial.

Merging with a Cover

Lemma 9

Given two sorted sequences A and B. Let X be a c-cover of B for constant c, and let rank(A : X) and rank(X : B) be known.

We can compute $\operatorname{rank}(A : B)$ using $\mathcal{O}(|X| + |A|)$ operations.

PA © Harald Räcke

PA © Harald Räcke 7 Searching and Sorting

In order to do the merge in iteration s + 1 in constant time we need to know

 $\operatorname{rank}(L_{s}[v]:L'_{s+1}[u]) \text{ and } \operatorname{rank}(L_{s}[v]:L'_{s+1}[w])$

and we need to know that $L_s[v]$ is a 4-cover of $L'_{s+1}[u]$ and $L'_{s+1}[w]$.

138

Lemma 11 $L_s[v]$ is a 4-cover of $L'_{s+1}[u]$ and $L'_{s+1}[w]$.

- $L_{s}[v] \supseteq L'_{s}[u], L'_{s}[w]$
- $L'_{s}[u]$ is 4-cover of $L'_{s+1}[u]$
- Hence, L_s[v] is 4-cover of L'_{s+1}[u] as adding more elements cannot destroy the cover-property.

חחווחר	PA
	© Harald Räcke

7 Searching and Sorting

Given

- $\operatorname{rank}(L'_{s}[u]:L'_{s+1}[u])$ (4-cover)
- $\blacktriangleright \operatorname{rank}(L'_{s}[w]:L'_{s}[u])$
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- $rank(L'_{s}[w]:L'_{s+1}[w])$ (4-cover)

Compute

- $\blacktriangleright \operatorname{rank}(L'_{s+1}[w]:L'_{s}[u])$
- ▶ $rank(L'_{s+1}[u]:L'_{s}[w])$

Compute

- ▶ $\operatorname{rank}(L'_{s+1}[w]:L'_{s+1}[u])$
- ► rank $(L'_{s+1}[u]: L'_{s+1}[w])$

ranks between siblings can be computed easily

M	PA	
	© Harald	Räcke

7 Searching and Sorting

143

141

Analysis

Lemma 12

Suppose we know for every internal node $\boldsymbol{\upsilon}$ with children \boldsymbol{u} and \boldsymbol{w}

- ▶ rank($L'_{s}[v]:L'_{s+1}[v]$)
- $\blacktriangleright \operatorname{rank}(L'_{s}[u]:L'_{s}[w])$
- ▶ rank($L'_s[w]$: $L'_s[u]$)

We can compute

- ▶ rank($L'_{s+1}[v]$: $L'_{s+2}[v]$)
- ▶ rank $(L'_{s+1}[u]:L'_{s+1}[w])$
- ▶ rank $(L'_{s+1}[w]: L'_{s+1}[u])$

in constant time and $O(|L_{s+1}[v]|)$ operations, where v is the parent of u and w.

PA ©Harald Räcke 7 Searching and Sorting

Given

- ▶ rank($L'_{s}[u] : L'_{s+1}[u]$) (4-cover → rank($L'_{s+1}[u] : L'_{s}[u]$))
- ▶ rank($L'_{s}[w]$: $L'_{s+1}[u]$)
- ▶ rank($L'_{s}[u]$: $L'_{s+1}[w]$)
- ▶ rank($L'_s[w] : L'_{s+1}[w]$) (4-cover → rank($L'_{s+1}[w] : L'_s[w]$))
- Compute (recall that $L_s[v] = merge(L'_s[u], L'_s[w]))$
- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[u])$
- $\blacktriangleright \operatorname{rank}(L_{s}[v]:L'_{s+1}[w])$

Compute

- rank($L_s[v]: L_{s+1}[v]$) (by adding)
- $\operatorname{rank}(L'_{s+1}[v]:L'_{s+2}[v])$ (by sampling)

142