Searching

An extension of binary search with p processors gives that one
can find the rank of an element in

logn

log,,1(n) = log(p + 1)

many parallel steps with p processors. (not work-optimal)

This requires a CREW PRAM model. For the EREW model
searching cannot be done faster than @(logn — logp) with p
processors even if there are p copies of the search key.

e,
©Harald Racke

121

Merging
Given two sorted sequences A = (a1,...,a,) and
B = (by,...,by), compute the sorted squence C = (c1,...,Cn).
Definition 1
Let X = (x1,...,Xx:) be a sequence. The rank rank(y : X) of y in
Xis

rank(y: X) =|{x € X | x < y}|

For a sequence Y = (v1,...

,Vs) we define

rank(Y : X) := (ry,...,7s) with r; = rank(y; : X).

7 Searching and Sorting

e,
©Harald Racke

122

Merging

We have already seen a merging-algorithm that runs in time
O(logn) and work O(n).

Using the fast search algorithm we can improve this to a running
time of @(loglogn) and work O(nloglogn).

7 Searching and Sorting

e,
©Harald Racke

123

Merging

Input: A =ay,...,an; B=by,....,.byy; m=<n

1. if m < 4 then rank elements of B, using the parallel search
algorithm with p processors. Time: O(1). Work: O(n).

2. Concurrently rank elements b s, by /s, - .., bm in A using
the parallel search algorithm with p = \/n. Time: O(1).
Work: O(ym - yn) = O(n)

J (i) :=rank(b; sm : A)

3. Let B; = (bi\/m4_1, - b(i+1)ﬁ_1); and
Ai = (Aj(i)+1r--» Aj(it1))-

Recursively compute rank(B; : A;).

4. Let k be index not a multiple of \/m. i = [\/%]. Then
rank(by : A) = j(i) + rank(by : A;).

7 Searching and Sorting

nne,
©Harald Racke

124

The algorithm can be made work-optimal by standard
techniques.

proof on board...

m PA 7 Searching and Sorting
©Harald Racke 125

Mergesort

Lemma 2
A straightforward parallelization of Mergesort can be
implemented in time O (lognloglogn) and with work O (nlogn).

This assumes the CREW-PRAM model.

m PA 7 Searching and Sorting
©Harald Racke 126

Mergesort

Let L[v] denote the (sorted) sublist of elements stored at the
leaf nodes rooted at v.

We can view Mergesort as computing L[v] for a complete binary
tree where the leaf nodes correspond to nodes in the given array.

Since the merge-operations on one level of the complete binary
tree can be performed in parallel we obtain time @(hloglogn)
and work @(hn), where h = O(logn) is the height of the tree.

m PA 7 Searching and Sorting
©Harald Racke 127

Pipelined Mergesort

We again compute L[v] for every node in the complete binary
tree.

After round s, L;[v] is an approximation of L[v] that will be
improved in future rounds.

For s = 3height(v), Ls[v] = L[v].

m PA 7 Searching and Sorting
©Harald Racke 128

Pipelined Mergesort

In every round, a node v sends sample(Ls;[v]) (an
approximation of its current list) upwards, and receives
approximations of the lists of its children.

It then computes a new approximation of its list.

A node is called active in round s if s < 3 height(v) (this means
its list is not yet complete at the start of the round, i.e.,
Ls—a1[v] = L[v]).

7 Searching and Sorting

e,
©Harald Racke

129

Pipelined Mergesort

Algorithm 11 ColeSort()
. initialize Lo[v] = Ay for leaf nodes; Lo[v] = 0 otw.
: for s — 1 to 3 - height(T) do
for all active nodes v do
// u and w children of v
Li[u] — sample(Ls—1[u])
Li[w] — sample(Ls—1[w])
Ls[v] — merge(L;[ul, Li[w])

N OO v AW N~

sampley (Ls[v]) s < 3height(v)
sample(Ls[v]) = 1 sample,(Ls[v]) s = 3height(v) +1
sample; (Ls[v]) s = 3height(v) + 2

7 Searching and Sorting

e
©Harald Racke

130

Colesort
[ofoTo[i 2]2]2]3]3] [a]s[s]s] [6]6]6[6]7[8]8[9]9T9[0]9]
[ofofof1[1]2]2]2[3]3[3]4[4]4[s5]5[5[6]6]6]6[6[6]6]7[8[8[9]9]9[o]9]
[0[2]2]2]3]4]s5[5[6[6]6[8]9]9[0]9] [oJoTn]1[3]3[4]4]5[6]6]6[6]7[8]9]
[o[2]2]2[3]4]5[5[6]6]6]8[9]9]9]9] [ofof1[1]3]3[4[4]5]6[6[6][6]7[8]9]
s=1
[0[2]34]o]9]9]o] [2] [6]6]6]8] [0[1T4]6]6]7[8]9] [1[3[374[5]6]6]
[o[2]3]4a[9]9]9]9] [2[2]5]5]6[6]6]8] [o[1]4a[6]6]7[8]9] [o[1]3[3]4]5[6]6]
[3T4]9]9] [o]2]9[9] [2]e]6[8] [2][5]5]6] 7]9] [1]e]e[8] [o[1]4]5] [3]|3]6]6]
[3T4]9]9] [o]2]9]9] [2]e[6]8] [2]5]5]6] 7[9] [1]e]e]8] [o]1]4]5] [3[3]6]6]

nne,
©Harald Racke

7 Searching and Sorting

Pipelined Mergesort

Lemma 3
After round s = 3 height(v), the list Ls[v] is complete.

Proof:
» clearly true for leaf nodes
> suppose it is true for all nodes up to height h;
» fix a node v on level h + 1 with children u and w
» L3pl[u] and L3p[w] are complete by induction hypothesis

» further sample(L3;.2[u]) = L[u] and
sample(L3p.2[v]) = L[V]

» hence in round 3h + 3 node v will merge the complete list
of its children; after the round L[v] will be complete

7 Searching and Sorting

nne,
©Harald Racke

132

Pipelined Mergesort

Lemma 4
The number of elements in lists Ls[v] for active nodes v is at
most O(n).

proof on board...

m PA 7 Searching and Sorting
©Harald Racke 133

Definition 5
A sequence X is a c-cover of a sequence Y if for any two
consecutive elements «, 8 from (—o0, X,) the set

[{vi| x<y; <B} <c.

m PA 7 Searching and Sorting
©Harald Racke 134

Pipelined Mergesort

Lemma 6
Li[v] is a 4-cover of L | [V].

If [a, b] fulfills |[[a,b] N (AU {—o0,0})| = k we say [a, D]
intersects (—o0, A, +) in k items.

Lemma 7

If la,b] witha,b € L;[v] U {—c0, 0} intersects (—oo,Li[V], c0) in
k > 2 jtems, then [a, D] intersects (—oo, L},) in at most 2k
items.

m PA 7 Searching and Sorting
©Harald Racke 135

o (@) (@)) O (@) o Q (@) (@) (@) (@) (@) (@] (@)
e — >,
N - \
/ N

Ls—1[v] / 4k - 3 \

- 4 R L T R VY ()] a
O OOOOOOO¢)OOOOO 000000050000500
. ! p+q=<4k-1 /,’ K
e /7
! ! ’ ’ e
le 2p o L[ul] Li[w]l| . 2q)/
Od)OOOOOOOOOOd)OOOOOOO OOOO&OOOOOOOOBOOOOOO

Ls[v] <2p+2q <8k-2
ooooooéoooooooooéooooooooooooooooooooooo

Ly (vl | <2k +1/4 <2k

ooé‘oooéoooooooo
! , Note that the last step holds as long L5+1[U] = sampley (Ls[v]). Otw. Ls_1[v] has already been I
I full, and hence, L/ [v],LS+1[v],LS+2[v] are 4-covers of the complete list L[v], and also 4-covers .
| | of each other. 1

Merging with a Cover

Lemma 8
Given two sorted sequences A and B. Let X be a c-cover of A and
B for constant c, and let rank(X : A) and rank(X : B) be known.

We can merge A and B in time O(1) using O(|X|) operations.

m PA 7 Searching and Sorting
©Harald Racke

137

Merging with a Cover

Lemma 9
Given two sorted sequences A and B. Let X be a c-cover of B for
constant c, and let rank(A : X) and rank(X : B) be known.

We can compute rank(A : B) using O(|X| + |A|) operations.

m PA 7 Searching and Sorting
©Harald Racke 138

Merging with a Cover

Lemma 10
Given two sorted sequences A and B. Let X be a c-cover of B for
constant c, and let rank(A : X) and rank(X : B) be known.

We can compute rank(B : A) using O(|X| + |A|) operations.

Easy to do with concurrent read. Can also be done with exclusive
read but non-trivial.

m PA 7 Searching and Sorting
©Harald Racke

In order to do the merge in iteration s + 1 in constant time we
need to know

rank(Ls[v]:L},;[ul) and rank(Ls[v]:L,,;[w])

and we need to know that L;[v] is a 4-cover of L;H[u] and
Li[wl.

m PA 7 Searching and Sorting
©Harald Racke 140

Lemma 11
Ls[v]is a4-cover of Ly [ul and L, [w].

> Ls[v] 2 Li[u], Li[w]
» Li[u] is 4-cover of L ;[u]

» Hence, Ls[v] is 4-cover of L;H[u] as adding more elements
cannot destroy the cover-property.

m PA 7 Searching and Sorting
©Harald Racke 141

Analysis

Lemma 12
Suppose we know for every internal node v with children u and
w

» rank(Li[v]: L, [v])
» rank(Li[u] : Li[w])
» rank(Ly[w]: L[u])

We can compute
» rank (L [v]:L;,,[v])
» rank(L}, [ul: L ;[w])
» rank (L} ,[w]: L}, ,[ul)

in constant time and O(|Ls+1[V]|) operations, where v is the
parent of u and w.

m PA 7 Searching and Sorting
©Harald Racke

142

Given

v

rank(Li[ul: L}, ,[u]) (4-cover)
rank(L;[w]: Li[ul)
rank(Li[u] : Li[w])

rank(L;[w]: L}, ,[w]) (4-cover)

v

v

v

Compute

» rank (L}, [w]:L;[ul)

» rank(L,, [u]: Li[w])
Compute

» rank(L},[w]: L, ;[ul)

» rank (L [u]: L, [w])

ranks between siblings can be computed easily

m PA 7 Searching and Sorting
©Harald Racke 143

Given
» rank(Li[u]: L, ,[u]) (4-cover — rank(L;, ,[u]:L;[ul))
» rank(Li[w]: L, [ul)
» rank(Ls[u]: Ly [w])
» rank(L;[w]: L, ,[w]) (4-cover — rank(L;_ ,[w]:L;[w]))
Compute (recall that Ls[v] = merge(L;[u],L;[w]))
» rank(Ls[v]: L}, [ul)
» rank(Ls[v]: Ly [w])
Compute
» rank(Ls[v]: Ls+1[v]) (by adding)
» rank(L} [v]: L, »[v]) (by sampling)

m PA 7 Searching and Sorting
©Harald Racke

144

	Searching and Sorting

