Prefix Sum

input: x[1]...x[n]output: s[1]...s[n] with $s[i] = \sum_{j=1}^{i} x[i]$ (w.r.t. operator *)

 Algorithm 6 PrefixSum(n, x[1]...x[n])

 1: // compute prefixsums; $n = 2^k$

 2: if n = 1 then $s[1] \leftarrow x[1]$; return

 3: for $1 \le i \le n/2$ pardo

 4: $a[i] \leftarrow x[2i-1] * x[2i]$

 5: $z[1], ..., z[n/2] \leftarrow$ PrefixSum(n/2, a[1]...a[n/2])

 6: for $1 \le i \le n$ pardo

 7: i even $: s[i] \leftarrow z[i/2]$

 8: i = 1 : s[1] = x[1]

 9: i odd $: s[i] \leftarrow z[(i-1)/2] * x[i]$

PA ©Harald Räcke

```
45
```

Prefix Sum

The algorithm uses work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

Parallel Prefix

PA © Harald Räcke

Input: a linked list given by successor pointers; a value x[i] for every list element; an operator *;

Output: for every list position ℓ the sum (w.r.t. *) of elements after ℓ in the list (including ℓ)

Parallel Prefix
Algorithm 7 ParallelPrefix
1: for $1 \le i \le n$ pardo
2: $P[i] \leftarrow S[i]$
3: while $S[i] \neq S[S[i]]$ do
4: $x[i] \leftarrow x[i] * x[S[i]]$ 5: $S[i] \leftarrow S[S[i]]$
5: $S[i] \leftarrow S[S[i]]$
6: if $P[i] \neq i$ then $x[i] \leftarrow x[i] * x[S(i)]$
The algorithm runs in time $O(\log n)$. It has work requirement $O(n \log n)$. non-optimal This technique is also known as pointer jumping
PA 4.2 Parallel Prefix © Harald Räcke

4.3 Divide & Conquer — Merging

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Clearly, for $x \in A$ we already know rank(x : A), and for $x \in B$ we know rank(x : B).

4.3 Divide & Conquer — Merging

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

 $\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = \text{rank}(y_i : X)$.

PA © Harald Räcke 4.3 Divide & Conquer — Merging

50

4.3 Divide & Conquer — Merging

Compute rank(x : A) for all $x \in B$ and rank(x : B) for all $x \in A$. can be done in $O(\log n)$ time with 2n processors by binary search

Lemma 3

On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n \log n)$ work.

not optimal

PA © Harald Räcke

49

4.3 Divide & Conquer — Merging

 $A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$ log *n* integral; $k := n/\log n$ integral;

Algorithm 8 GenerateSubproblems

1: $j_0 \leftarrow 0$
2: $j_k \leftarrow n$
3: for $1 \le i \le k - 1$ pardo
4: $j_i \leftarrow \operatorname{rank}(b_{i\log n}:A)$
5: for $0 \le i \le k - 1$ pardo
6: $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$
7: $A_i \leftarrow (a_{j_i+1}, \ldots, a_{j_{i+1}})$

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.

	4.3 Divide & Conquer — Merging
PA ©Harald Räcke	is binde a conquer merging

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time O(1) with n^2 processors.

proof on board...

PA ©Harald Räcke

4.4 Maximum Computation

55

53

4.3 Divide & Conquer — Merging

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

the resulting algorithm is work optimal

PA © Harald Räcke

4.3 Divide & Conquer — Merging

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board...

54

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board...

Г	חחו	PA © Harald Räcke	
L		© Harald Räcke	

5

4.4 Maximum Computation

57

59

4.5 Inserting into a (2, 3)-tree

1. determine for every x_i the leaf element before which it has to be inserted

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

2. determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;

3. insert the middle element of every chain compute new chains

time: $O(\log n)$; work: $O(k_i \log n + k)$; k_i = #inserted elements

(computing new chains is constant time)

 repeat Step 3 for logarithmically many rounds time: O(log n log k); work: O(k log n);

```
PA
©Harald Räcke
```

4.5 Inserting into a (2,3)-tree

4.5 Inserting into a (2, 3)-tree

Given a (2, 3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \ldots, x_k into the tree $(k \ll n)$. time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase *i* of round *r* as long as phase *i* of round r - 1 and (of course), phase i - 1 of round *r* has finished.

This is called Pipelining. Using this technique we can perform all rounds in Step 4 in just $O(\log k + \log n)$ many parallel steps.

	4.5 Inserting into a (2,3)-tree	
🛛 💾 🗋 🖉 🛛 🖓 🛛 🖓 🖉 🖉		61

4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with $\lceil \log n \rceil$ colors.

1: fc	or $1 \le i \le n$ pardo
2:	$\operatorname{col}(i) \leftarrow i$
3:	$k_i \leftarrow \text{smallest bitpos where } \operatorname{col}(i) \text{ and } \operatorname{col}(S(i)) \text{ differ}$
4:	$\operatorname{col}'(i) \leftarrow 2k_i + \operatorname{col}(i)_{k_i}$
hit nos	itions are numbered starting with ()
bit pos	itions are numbered starting with 0)
bit pos	sitions are numbered starting with 0) 4.6 Symmetry Breaking

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

2(t-1) + 1

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$$

Applying the algorithm repeatedly generates a constant number of colors after $O(\log^* n)$ operations.

Note that the first inequality holds because 2(t-1) - 1 is odd.

4.6 Symmetry Breaking

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

-	ithm 10 ReColor
	r ℓ ← 5 to 3
2:	for $1 \le i \le n$ pardo
3:	if $\operatorname{col}(i) = \ell$ then
4:	$\operatorname{col}(i) \leftarrow \min\{\{0, 1, 2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

	4.6 Symmetry Breaking	
U L U C Harald Räcke	6	•5

4.6 Symmetry Breaking

Lemma 8

Given n integers in the range $0, ..., O(\log n)$, there is an algorithm that sorts these numbers in $O(\log n)$ time using a linear number of operations.

Proof: Exercise!

PA ©Harald Räcke

4.6 Symmetry Breaking

67

4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in $O(\log^* n)$ time and with $O(n\log^* n)$ work.

4.6 Symmetry Breaking

not work optimal

PA © Harald Räcke

4.6 Symmetry Breaking Algorithm 11 OptColor 1: for $1 \le i \le n$ pardo $col(i) \leftarrow i$ 2: 3: apply BasicColoring once 4: sort vertices by colors 5: for $\ell = 2[\log n]$ to 3 do for all vertices i of color ℓ pardo 6: $col(i) \leftarrow min\{\{0, 1, 2\} \setminus \{col(P[i]), col(S[i])\}\}$ 7: We can perform Lines 6 and 7 in time $\mathcal{O}(n_{\ell})$ only because we sorted before. In general a statement like "**for** constraint **pardo**" should only contain a contraint on the id's of the processors ! but not something complicated (like the color) which has to be checked and, hence, induces $\frac{1}{2}$ work. Because of the sorting we can transform this complicated constraint into a constraint on $\frac{1}{2}$ just the processor id's.

PA © Harald Räcke 66

Lemma 9

A ring can be colored with 3 colors in time $O(\log n)$ and with work O(n).

work optimal but not too fast

	4.6 Symmetry Breaking	
UUUC © Harald Räcke		69

