12

Greedy-algorithm:

v

start with f(e) = 0 everywhere

v

find an s-t path with f(e) < c(e) on every edge

v

augment flow along the path

v

repeat as long as possible

2

’2%\’19 0/10
20
2130
0//0 ’1%\19
~

m ©Harald Racke

443

The Residual Graph
From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey, cyr) (the residual graph):
» Suppose the original graph has edges e¢; = (u,v), and
e>» = (v, u) between u and v.

» G has edge ¢ with capacity max{0,c(e;) — f(e1) + f(e2)}
and e}, with with capacity max{0, c(e2) — f(e2) + f(e1)}.

G @‘ Tane 10]20 ,@

Gr W= 12 24 >@®)

12.1 The Generic Augmenting Path Algorithm

m ©Harald Racke 444

Augmenting Path Algorithm

m ©Harald Racke

Definition 1

An augmenting path with respect to flow f, is a path from s to ¢
in the auxiliary graph G that contains only edges with non-zero
capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in Gy do

3: augment as much flow along p as possible.

12.1 The Generic Augmenting Path Algorithm

445

Augmenting Path Algorithm

I

: Animation for augmenting path
| algorithms is only available in the
1

: lecture version of the slides.

1

m 12.1 The Generic Augmenting Path Algorithm
©Harald Racke 446




Augmenting Path Algorithm

Theorem 2
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 3
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A, B such that val(f) = cap(A, B).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

12.1 The Generic Augmenting Path Algorithm

m ©Harald Racke

447

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.

» Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

» Since there is no augmenting path we have s € Aand t ¢ A.

12.1 The Generic Augmenting Path Algorithm

m ©Harald Racke 448

Augmenting Path Algorithm

val(f) = Z fe) — Z f(e)
ecout(A) ecinto(A)
= > cle)
ecout(A)
=cap(A,V\A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the
second exploits the fact that the flow along incoming edges
must be 0 as the residual graph does not have edges leaving A.

12.1 The Generic Augmenting Path Algorithm

m ©Harald Racke

449

Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:
Every flow value f(e) and every residual capacity c¢(e) remains
integral troughout the algorithm.

12.1 The Generic Augmenting Path Algorithm

m ©Harald Racke 450




Lemma 4
The algorithm terminates in at most val(f*) < nC iterations,

where f* denotes the maximum flow. Each iteration can be
implemented in time O (m). This gives a total running time of

O(nmC).

Theorem 5
If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

12.1 The Generic Augmenting Path Algorithm
451

m ©Harald Racke

A Bad Input

Problem: The running time may not be polynomial.

/®
Y B
&7 \e
3 S0p,
0 0 0
; 1 o
O Sl
‘3000 : ,
Question:
Can we tweak the algorithm so that the running time is
polynomial in the input length7
1

See the lecture-version of the slides
I a A
| the animation.

12.1 The Generic Augmenting Path Algorithm

m ©Harald Racke

|
for

A Bad Input

Problem: The running time may not be polynomial.

M %
QQ’Q 000
01
% ©
%0 o

Question:
Can we tweak the algorithm so that the running time is

polynomial in the input length?

12.1 The Generic Augmenting Path Algorithm
452

m ©Harald Racke

A Pathological Input

Letr = %(\5— 1). Then ¥"*+2 = 3 — yn+l,

——r——

AN

pan

N
N

Running time may be infinite!!! .
: See the lecture-version of the slides for
| the animation. \

12.1 The Generic Augmenting Path Algorithm
454

m ©Harald Racke




How to choose augmenting paths?
» We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.
» Choose path with sufficiently large bottleneck capacity.

» Choose the shortest augmenting path.

m 12.1 The Generic Augmenting Path Algorithm
©Harald Racke 455




	The Generic Augmenting Path Algorithm

