
1 Note that the cases do not cover all pos- |

6.2 Master Theorem ! sibillties. !
Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence

T(n) = aT() +f(n) .

Case 1.
If f(n) = O(n'°8(@=€) then T(n) = O(nlogra),

Case 2.
If f(n) = ©(n'°8@ 1ogk n) then T(n) = O (o2 a10gk*! n),
k >0.

Case 3.
If f(n) = Q(nloss@+€y and for sufficiently large n
af(%) < cf(n) for some constant c <1 then T(n) = O(f(n)).

m ©Harald Racke 51

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

m 6.2 Master Theorem
©Harald Racke

52

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m 6.2 Master Theorem
©Harald Racke

53

6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a?(%) :

i=0

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

; n
T -l =3 aif (%)
i=0
logyn-1 n \log»a—e
se 3 a(y)
i=0
log, n—1
—i _ i —i i —i log, a—e €\l
p-illogya-e) _ peiplogyay—i _ peig=i | = cp b Z (b)
i=0

_ Cnlogba—E(beloghn . 1)/(196 -1)

_ cnloghafe(ne _ 1)/(b6 -1)

= e (e = 1)/ (n)

Hence,

Cc

T(n) < <

pe g > T(n) = 08 9).

m 6.2 Master Theorem
©Harald Racke 55

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
_ . logpa _ i i
T(n)-n = Z af(l.)
i=0
log, n—1 n log, a
a | ——
> a2

i=0

IA
o

=cnlogra X

|
o
:b—'
(=}
Q9
ol
N
—
@]
o
Ny
S

Hence,

T(n) = 08 log,n) |= T(n) = 08 logn).

m 6.2 Master Theorem
©Harald Racke 56

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 ' n
T —nloswe =Y atp(r)
i=0
logp n—1
>c > al(%

)logh a
i=0

logy n—1
=cnlo®a X
i=0
= cnl°® %log, n

Hence,

T(n) = Qn'%%log,n) |= T(n) = Q% 4logn).

m 6.2 Master Theorem
©Harald Racke 57

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
i=0
log, n—1 n logy, a n k
i
e 3oa(g) T (lom (55))
i=0
-1 bl \k
n:hgsﬁzlogbn‘ =Cn10gba Z (logb (E))
i=0

{-1
= cnlogra Z 0 - i)k
i=0

0
= Cnl()gb qa Z ik ~ %#kﬂ
i=1

%nlogh apk+1 ‘ = T(n) = O(nloghulogkﬂ n).

Q

m 6.2 Master Theorem
©Harald Racke 58

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

a i n
logp n—1
< > cdfm)+omea
i=0
a<1:2ioq' = ll‘l_rlqﬂ e <7 log, a)
Hence,
T(n) <O(f(n)) = T(n) = ®(f(n)).]

m 6.2 Master Theorem
©Harald Racke

59

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,00010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

m 6.2 Master Theorem
©Harald Racke

60

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001X1011
10001 . |

1

100010 |
¢ Note that the intermediate num-:

1

1

1

method” for multiplying integers.

O O O O O O 0 bers that are generatefj can have
10001000 .L_amostmtns<2onbits
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)ym) = O(nm).

m 6.2 Master Theorem
©Harald Racke 61

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By | X | Aj Ao

Then it holds that

A=A, -2%2 + Agand B=B; - 22 + B

Hence,

A-B=A1By-2"+ (A;Bo + AoBy) - 27 + Ag - By

m 6.2 Master Theorem
©Harald Racke

62

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(Ay,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zo — mult(Ag, By)

8: return Z» - 2" + 7Z; - 27 Zo

We get the following recurrence:

T(n) = 4T<g> +OMm) .

‘m 6.2 Master Theorem
©Harald Racke

O(1)
O(1)
O(n)
On)
T(%)

2T (1) + O(n)

T(%)
O(n)

63

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nl°8r4)
» Case 2: f(n) = O(nl°%alogkn) T(n) = OI%2logh™ n)
» Case 3: f(n) = Q(nlograte) T(n) =0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©@(n?) for our algorithm.

=> Not better then the “school method”.

m 6.2 Master Theorem
©Harald Racke

64

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

I
I
[

A more precise
(correct) analysis
would say that
computing Z;
needs time
T(%+1)+0(n).

m ©Harald Racke

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

1
2
3:
4: split B into By and B,

o wv

. if |A| = |B] = 1 then

return ag - by
split A into Ag and A;

Z> — mult(Aq,B;)
Zo — mult(Ag, Bo)

7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z

n
return Z» - 2" + Z1 - 22 + Z

6.2 Master Theorem

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%)+0(n)
O(n)

65

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%> +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

» Case 1: f(n) = O(nlogra—e€) T(n) = O(nlosra)
» Case 2: f(n) = O(nl°%ra1ogkn) T(n) = O(nlograloght!
» Case 3: f(n) = Q(nlogb a+e) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(1’11'59).

A huge improvement over the “school method”.

m 6.2 Master Theorem
©Harald Racke

n)

66

	Master Theorem

