Lemma 1

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{h}\right) + f(n) .$$

Case 1.

If
$$f(n) = \mathcal{O}(n^{\log_b(a) - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$.

Case 2.

If
$$f(n) = \Theta(n^{\log_b(a)} \log^k n)$$
 then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

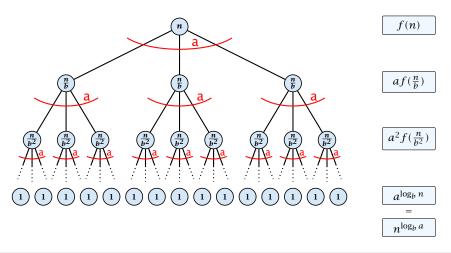
If
$$f(n) = \Omega(n^{\log_b(a) + \epsilon})$$
 and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant $c < 1$ then $T(n) = \Theta(f(n))$.

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form b^ℓ , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) .$$

Case 1. Now suppose that $f(n) \le c n^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\frac{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}}{\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q-1}} = cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q-1} = cn^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1)/(b^{\epsilon} - 1)$$

$$= cn^{\log_b a - \epsilon} (n^{\epsilon} - 1)/(b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1)/(n^{\epsilon})$$

$$T(n) \le \left(\frac{c}{h^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$

$$\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$$

Case 2. Now suppose that $f(n) \le c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n) \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$$

Case 2. Now suppose that $f(n) \ge c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\geq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$

Case 2. Now suppose that $f(n) \le c n^{\log_b a} (\log_b(n))^k$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n = b^{\ell} \Rightarrow \ell = \log_b n = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k e^{-ik} e^{-ik} e^{-ik}$$

$$\approx \frac{c}{b} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$

Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \le cf(n)$, for c < 1.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

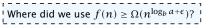
$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

$$T(n) \le \mathcal{O}(f(n))$$

$$\Rightarrow T(n) = \Theta(f(n)).$$

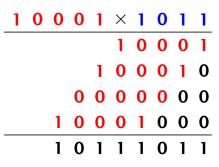


Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).



- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate numbers that are generated can have at most $m+n \le 2n$ bits.

Time requirement:

- ▶ Computing intermediate results: O(nm).
- ► Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

Algorithm 3 $mult(A, B)$	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: $\operatorname{split} A$ into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
$5: Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_1 \leftarrow \operatorname{mult}(A_1, B_0) + \operatorname{mult}(A_0, B_1)$	$2T(\frac{n}{2}) + \mathcal{O}(n)$
7: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{n}{2})$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	O(n)

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- ► Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

Algorithm 4 mult(A, B)1: **if** |A| = |B| = 1 **then** 2: **return** $a_0 \cdot b_0$ 3: split A into A_0 and A_1 4: split B into B_0 and B_1 $\begin{array}{l} \text{Solution} \\ \text{6: } Z_0 \leftarrow \text{mult}(A_1, B_1) \\ \text{7: } Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0 \\ \text{8: } \textbf{return } Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0 \end{array} \qquad \begin{array}{l} \mathcal{O}(n) \\ \mathcal{T}(\frac{n}{2}) \\ \mathcal{T}(\frac{n}{2}) \\ \mathcal{O}(n) \\ \mathcal{O}(n) \end{array}$

A more precise (correct) analysis would say that computing Z_1 needs time $T(\frac{n}{2}+1)+\mathcal{O}(n)$.

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

► Case 1:
$$f(n) = \mathcal{O}(n^{\log_b a - \epsilon})$$
 $T(n) = \Theta(n^{\log_b a})$

► Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$
 $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

• Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".