6.2 Master Theorem

Note that the cases do not cover all possibilities.

Lemma 1

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) .$$

Case 1.

If $f(n) = \mathcal{O}(n^{\log_b(a) - \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$.

Case 2.

If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

51

f(n)

 $af(\frac{n}{b})$

 $a^2 f(\frac{n}{h^2})$

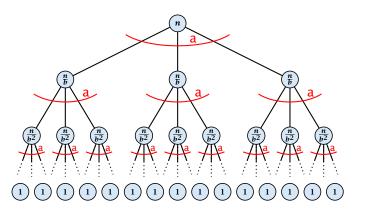
 $a^{\log_b n}$

 $n^{\log_b a}$

53

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:



6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form b^ℓ , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

© Harald Räcke

6.2 Master Theorem

F 2

6.2 Master Theorem

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) .$$

Case 1. Now suppose that
$$f(n) \le c n^{\log_b a - \epsilon}$$
.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$

$$= c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\begin{bmatrix}
\sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1}
\end{bmatrix} = c n^{\log_{b} a - \epsilon} (b^{\epsilon \log_{b} n} - 1) / (b^{\epsilon} - 1)$$

$$= c n^{\log_{b} a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_{b} a} (n^{\epsilon} - 1) / (n^{\epsilon})$$

Hence,

$$T(n) \le \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$

Marald Räcke

6.2 Master Theorem

55

Case 2. Now suppose that $f(n) \ge c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\ge c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

6.2 Master Theorem

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_h n)$$
 $\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$

Case 2. Now suppose that $f(n) \le c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$

© Harald Räcke

6.2 Master Theorem

56

Case 2. Now suppose that $f(n) \le c n^{\log_b a} (\log_b (n))^k$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k \sum_{i=1}^{\ell} i^k e^{k+1}$$

$$\approx \frac{c}{k} n^{\log_b a} \ell^{k+1}$$

$$\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$

57

Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \le cf(n)$, for c < 1.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

$$T(n) \leq \mathcal{O}(f(n))$$

$$\Rightarrow T(n) = \Theta(f(n)).$$

Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$?

6.2 Master Theorem

50

61

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

- This is also nown as the "school method" for multiplying integers.
- Note that the intermediate numbers that are generated can have at most $m+n \le 2n$ bits.

Time requirement:

▶ Computing intermediate results: O(nm).

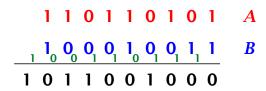
6.2 Master Theorem

► Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers *A* and *B*:



This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

6.2 Master Theorem

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

B_1 B_0	×	A_1	A_0
-------------	---	-------	-------

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)1: **if** |A| = |B| = 1 **then** $\mathcal{O}(1)$ return $a_0 \cdot b_0$ $\mathcal{O}(1)$ 3: split A into A_0 and A_1 $\mathcal{O}(n)$ 4: split B into B_0 and B_1 $\mathcal{O}(n)$ $T(\frac{n}{2})$ 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ $2T(\frac{n}{2}) + \mathcal{O}(n)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ $T(\frac{n}{2})$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

6.2 Master Theorem

63

65

Example: Multiplying Two Integers

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

6.2 Master Theorem

Hence,

Algorithm 4 $mult(A, B)$	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: $\operatorname{split} A$ into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
$5: Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{\overline{n}}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$	$T(\frac{\bar{n}}{2}) + \mathcal{O}(n)$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	O(n)

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

6.2 Master Theorem

64

Example: Multiplying Two Integers

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

A more precise (correct) analysis

would say that computing Z_1

needs time $T(\frac{n}{2}+1)+\mathcal{O}(n)$.