6.2 Master Theorem Note that the cases do not cover all possibilities. #### Lemma 1 Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence $$T(n) = aT\left(\frac{n}{b}\right) + f(n) .$$ #### Case 1. If $f(n) = \mathcal{O}(n^{\log_b(a) - \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$. #### Case 2. If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$. #### Case 3. If $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$. 51 f(n) $af(\frac{n}{b})$ $a^2 f(\frac{n}{h^2})$ $a^{\log_b n}$ $n^{\log_b a}$ 53 ### **The Recursion Tree** The running time of a recursive algorithm can be visualized by a recursion tree: #### 6.2 Master Theorem We prove the Master Theorem for the case that n is of the form b^ℓ , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1. © Harald Räcke 6.2 Master Theorem F 2 # **6.2 Master Theorem** This gives $$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) .$$ Case 1. Now suppose that $$f(n) \le c n^{\log_b a - \epsilon}$$. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$ $$b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}$$ $$= c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$ $$\begin{bmatrix} \sum_{i=0}^{k} q^{i} = \frac{q^{k+1}-1}{q-1} \end{bmatrix} = c n^{\log_{b} a - \epsilon} (b^{\epsilon \log_{b} n} - 1) / (b^{\epsilon} - 1)$$ $$= c n^{\log_{b} a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$ $$= \frac{c}{b^{\epsilon} - 1} n^{\log_{b} a} (n^{\epsilon} - 1) / (n^{\epsilon})$$ Hence, $$T(n) \le \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$ $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$ Marald Räcke 6.2 Master Theorem 55 ### Case 2. Now suppose that $f(n) \ge c n^{\log_b a}$. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\ge c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ 6.2 Master Theorem Hence, $$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_h n)$$ $\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$ #### Case 2. Now suppose that $f(n) \le c n^{\log_b a}$. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$ $$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$ $$= c n^{\log_b a} \log_b n$$ Hence, $$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$ $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$ © Harald Räcke 6.2 Master Theorem 56 Case 2. Now suppose that $f(n) \le c n^{\log_b a} (\log_b (n))^k$. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$ $$\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$ $$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k \sum_{i=1}^{\ell} i^k e^{k+1}$$ $$\approx \frac{c}{k} n^{\log_b a} \ell^{k+1}$$ $$\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$ 57 Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $af(n/b) \le cf(n)$, for c < 1. From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large. $$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$ $$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$ $$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$ Hence, $$T(n) \leq \mathcal{O}(f(n))$$ $$\Rightarrow T(n) = \Theta(f(n)).$$ Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$? 6.2 Master Theorem 50 61 # **Example: Multiplying Two Integers** Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$). - This is also nown as the "school method" for multiplying integers. - Note that the intermediate numbers that are generated can have at most $m+n \le 2n$ bits. ### Time requirement: ▶ Computing intermediate results: O(nm). 6.2 Master Theorem ► Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$. ### **Example: Multiplying Two Integers** Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size. For this we first need to be able to add two integers *A* and *B*: This gives that two n-bit integers can be added in time $\mathcal{O}(n)$. 6.2 Master Theorem --- # **Example: Multiplying Two Integers** ### A recursive approach: Suppose that integers **A** and **B** are of length $n = 2^k$, for some k. | B_1 B_0 | × | A_1 | A_0 | |-------------|---|-------|-------| |-------------|---|-------|-------| Then it holds that $$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$ and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$ Hence, $$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$ # **Example: Multiplying Two Integers** #### **Algorithm 3** mult(A, B)1: **if** |A| = |B| = 1 **then** $\mathcal{O}(1)$ return $a_0 \cdot b_0$ $\mathcal{O}(1)$ 3: split A into A_0 and A_1 $\mathcal{O}(n)$ 4: split B into B_0 and B_1 $\mathcal{O}(n)$ $T(\frac{n}{2})$ 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ $2T(\frac{n}{2}) + \mathcal{O}(n)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ $T(\frac{n}{2})$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $\mathcal{O}(n)$ We get the following recurrence: $$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$ 6.2 Master Theorem 63 65 # **Example: Multiplying Two Integers** We can use the following identity to compute Z_1 : $$Z_1 = A_1 B_0 + A_0 B_1$$ = Z_2 = Z_0 = $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$ 6.2 Master Theorem Hence, | Algorithm 4 $mult(A, B)$ | | |---|---| | 1: if $ A = B = 1$ then | $\mathcal{O}(1)$ | | 2: return $a_0 \cdot b_0$ | $\mathcal{O}(1)$ | | 3: $\operatorname{split} A$ into A_0 and A_1 | $\mathcal{O}(n)$ | | 4: split B into B_0 and B_1 | $\mathcal{O}(n)$ | | $5: Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$ | $T(\frac{n}{2})$ | | 6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$ | $T(\frac{\overline{n}}{2})$ | | 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ | $T(\frac{\bar{n}}{2}) + \mathcal{O}(n)$ | | 7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ | O(n) | ### **Example: Multiplying Two Integers** **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$. - ► Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$. We get a running time of $\mathcal{O}(n^2)$ for our algorithm. ⇒ Not better then the "school method". 6.2 Master Theorem 64 # **Example: Multiplying Two Integers** We get the following recurrence: $$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$ **Master Theorem:** Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$. - ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$ - ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ - Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$ Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$. A huge improvement over the "school method". A more precise (correct) analysis would say that computing Z_1 needs time $T(\frac{n}{2}+1)+\mathcal{O}(n)$.