Dynamic Set Data Structure *S***:**

- \triangleright S. insert(x)
- \triangleright S. delete(x)
- \triangleright S. search(x)
- ► *S*.min()
- ► *S*.max()
- \triangleright S. succ(x)
- ► *S*.pred(*x*)

For this chapter we ignore the problem of storing satellite data:

- S. insert(x): Inserts x into S.
- ▶ S. delete(x): Deletes x from S. Usually assumes that $x \in S$.
- **S.** member(x): Returns 1 if $x \in S$ and 0 otw.
- $S. \min()$: Returns the value of the minimum element in S.
- ► S. max(): Returns the value of the maximum element in S.
- S. succ(x): Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- ► S. pred(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from $\{0, 1, \dots, u-1\}$, where u denotes the size of the universe.

one array of u bits

Use an array that encodes the indicator function of the dynamic set.

```
Algorithm 21 array.insert(x)
1: content[x] \leftarrow 1;
```

```
Algorithm 22 array.delete(x)
1: content[x] \leftarrow 0;
```

```
Algorithm 23 array.member(x)
1: return content[x];
```

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.

Algorithm 24 array.max() 1: for $(i = \text{size} - 1; i \ge 0; i--)$ do 2: if content[i] = 1 then return i; 3: return null;

```
Algorithm 25 array.min()

1: for (i = 0; i < \text{size}; i++) do

2: if content[i] = 1 then return i;

3: return null;
```

• Running time is $\mathcal{O}(u)$ in the worst case.

Algorithm 26 array.succ(x)

```
1: for (i = x + 1; i < \text{size}; i++) do
2: if content[i] = 1 then return i;
3: return null;
```

- Algorithm 27 array.pred(x)

 1: for (i = x 1; $i \ge 0$; i---) do

 2: if content[i] = 1 then return i;

 3: return null;
- Running time is $\mathcal{O}(u)$ in the worst case.

- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The *i*-th bit in the summary array stores the bit-wise or of the bits in the *i*-th cluster.

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u=2^{2k}$ for some $k\geq 1$. Then we can compute the cluster-number for an entry x as $\mathrm{high}(x)$ (the upper half of the dual representation of x) and the position of x within its cluster as $\mathrm{low}(x)$ (the lower half of the dual representation).

Algorithm 28 member(x)

1: **return** cluster[high(x)].member(low(x));

Algorithm 29 insert(x)

- 1: $\operatorname{cluster}[\operatorname{high}(x)].\operatorname{insert}(\operatorname{low}(x));$
- 2: summary.insert(high(x));
- ► The running times are constant, because the corresponding array-functions have constant running times.

Algorithm 30 delete(x)

- 1: cluster[high(x)]. delete(low(x));
- 2: **if** cluster[high(x)]. min() = null **then**
- 3: summary . delete(high(x));

► The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u} . Hence, $\mathcal{O}(\sqrt{u})$.

Algorithm 31 max()

- 1: *maxcluster* ← summary.max();
- 2: if maxcluster = null return null;
 3: offs ← cluster[maxcluster]. max()
 4: return maxcluster ∘ offs;

Algorithm 32 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: offs ← cluster[mincluster].min();4: return mincluster ∘ offs;

! The operator o stands for the concatenation of two bitstrings. ! This means if $x = 0111_2$ and $y = 0001_2$ then $x \circ y = 01110001_2.$

Running time is roughly $2\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

```
Algorithm 33 \operatorname{succ}(x)

1: m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{succ}(\operatorname{low}(x))

2: if m \neq \operatorname{null} then return \operatorname{high}(x) \circ m;

3: \operatorname{succcluster} \leftarrow \operatorname{summary}.\operatorname{succ}(\operatorname{high}(x));

4: if \operatorname{succcluster} \neq \operatorname{null} then

5: \operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{succcluster}].\operatorname{min}();

6: \operatorname{return} \operatorname{succcluster} \circ \operatorname{offs};

7: \operatorname{return} \operatorname{null};
```

• Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

```
Algorithm 34 pred(x)

1: m ← cluster[high(x)].pred(low(x))

2: if m ≠ null then return high(x) ∘ m;

3: predcluster ← summary.pred(high(x));

4: if predcluster ≠ null then

5: offs ← cluster[predcluster].max();

6: return predcluster ∘ offs;

7: return null;
```

• Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

We assume that $u = 2^{2^k}$ for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the recursion).

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an S(4) will contain S(2)'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure S(4) is not a recursive call as it will call the function array. min().

This means that the non-recursive case is been dealt with while initializing the data-structure.

Algorithm 35 member(x)

1: **return** cluster[high(x)]. member(low(x));

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1.$

Algorithm 36 insert(x)

- 1: cluster[high(x)].insert(low(x));
- 2: summary.insert(high(x));

• $T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1.$

Algorithm 37 delete(x)

- 1: cluster[high(x)].delete(low(x));
- 2: **if** cluster[high(x)].min() = null **then**
- 3: summary . delete(high(x));
- $T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$

Algorithm 38 min()

- 1: *mincluster* ← summary.min();
- 2: **if** *mincluster* = null **return** null;
- 3: *offs* ← cluster[*mincluster*].min();
- 4: **return** *mincluster* ∘ *offs*;
- $T_{\min}(u) = 2T_{\min}(\sqrt{u}) + 1.$

Algorithm 39 $\operatorname{succ}(x)$ 1: $m \leftarrow \operatorname{cluster}[\operatorname{high}(x)].\operatorname{succ}(\operatorname{low}(x))$ 2: **if** $m \neq \operatorname{null}$ **then return** $\operatorname{high}(x) \circ m$; 3: $\operatorname{succcluster} \leftarrow \operatorname{summary}.\operatorname{succ}(\operatorname{high}(x))$; 4: **if** $\operatorname{succcluster} \neq \operatorname{null}$ **then**5: $\operatorname{offs} \leftarrow \operatorname{cluster}[\operatorname{succcluster}].\operatorname{min}()$; 6: $\operatorname{return} \operatorname{succcluster} \circ \operatorname{offs}$; 7: $\operatorname{return} \operatorname{null}$;

$$T_{\text{succ}}(u) = 2T_{\text{succ}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1.$$

$$T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$
:

Set $\ell := \log u$ and $X(\ell) := T_{\text{mem}}(2^{\ell})$. Then

$$X(\ell) = T_{\text{mem}}(2^{\ell}) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$$

= $T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1$.

Using Master theorem gives $X(\ell) = \mathcal{O}(\log \ell)$, and hence $T_{\text{mem}}(u) = \mathcal{O}(\log \log u)$.

$$T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1.$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{ins}}(2^{\ell})$. Then

$$\begin{split} X(\ell) &= T_{\rm ins}(2^\ell) = T_{\rm ins}(u) = 2T_{\rm ins}(\sqrt{u}) + 1 \\ &= 2T_{\rm ins}(2^{\frac{\ell}{2}}) + 1 = 2X(\frac{\ell}{2}) + 1 \ . \end{split}$$

Using Master theorem gives $X(\ell) = \mathcal{O}(\ell)$, and hence $T_{\mathrm{ins}}(u) = \mathcal{O}(\log u)$.

The same holds for $T_{\text{max}}(u)$ and $T_{\text{min}}(u)$.

$$T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\min}(\sqrt{u}) + 1 \le 2T_{\text{del}}(\sqrt{u}) + c \log(u).$$

Set $\ell := \log u$ and $X(\ell) := T_{\text{del}}(2^{\ell})$. Then

$$\begin{split} X(\ell) &= T_{\text{del}}(2^{\ell}) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c\log u \\ &= 2T_{\text{del}}(2^{\frac{\ell}{2}}) + c\ell = 2X(\frac{\ell}{2}) + c\ell \ . \end{split}$$

Using Master theorem gives $X(\ell) = \Theta(\ell \log \ell)$, and hence $T_{\text{del}}(u) = \mathcal{O}(\log u \log \log u)$.

The same holds for $T_{\text{pred}}(u)$ and $T_{\text{succ}}(u)$.

- The bit referenced by min is not set within sub-datastructures.
- ► The bit referenced by max is set within sub-datastructures (if max \neq min).

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- min = max ≠ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting min = max = x.
- ▶ We can delete from a data-structure that just contains one element in constant time by setting min = max = null.

Algorithm 40 max()
1: return max;

Algorithm 41 min()

1: return min;

Constant time.

Algorithm 42 member(x)

1: **if** $x = \min$ **then return** 1; // TRUE 2: **return** cluster[high(x)].member(low(x));

 $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \Longrightarrow T(u) = \mathcal{O}(\log \log u).$

```
Algorithm 43 succ(x)
1: if min \neq null \wedge x < min then return min;
2: maxincluster \leftarrow cluster[high(x)].max();
3: if maxincluster \neq null \land low(x) < maxincluster then
         offs \leftarrow cluster[high(x)]. succ(low(x));
4:
        return high(x) \circ offs;
5:
6: else
7:
         succeluster \leftarrow summary.succ(high(x));
        if succeluster = null then return null:
8:
         offs \leftarrow cluster[succeluster].min();
9:
         return succeluster ∘ offs;
10:
```

 $T_{\text{succ}}(u) = T_{\text{succ}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{succ}}(u) = \mathcal{O}(\log \log u).$

```
Algorithm 44 insert(x)
1: if min = null then
     \min = x; \max = x;
3: else
       if x < \min then exchange x and \min;
4:
       if cluster[high(x)]. min = null; then
6:
            summary insert(high(x));
            cluster[high(x)].insert(low(x));
7:
        else
            cluster[high(x)].insert(low(x));
        if x > \max then \max = x;
10:
```

 $T_{\text{ins}}(u) = T_{\text{ins}}(\sqrt{u}) + 1 \Longrightarrow T_{\text{ins}}(u) = \mathcal{O}(\log \log u).$

Note that the recusive call in Line 7 takes constant time as the if-condition in Line 5 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 6 and in Line 9. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{\text{ins}}(u) = T_{\text{ins}}(\sqrt{u}) + 1$.

Assumes that x is contained in the structure.

```
Algorithm 45 delete(x)
 1: if min = max then
      min = null; max = null;
 3: else
       if x = \min then
                                           find new minimum
    firstcluster \leftarrow summary.min();
          offs \leftarrow cluster[firstcluster].min();
6:
 7:
      x \leftarrow firstcluster \circ offs;
        \min \leftarrow x;
9:
        cluster[high(x)]. delete(low(x));
                                                      delete
                         continued...
```

```
Algorithm 45 delete(x)
                          ...continued
                                                    fix maximum
         if cluster[high(x)]. min() = null then
10:
              summary. delete(high(x));
11:
              if x = \max then
12:
13:
                   summax \leftarrow summary.max();
                   if summax = null then max \leftarrow min;
14:
15:
                   else
                        offs \leftarrow cluster[summax].max();
16:
17:
                        max ← summax ∘ offs
         else
18:
              if x = \max then
19:
                   offs \leftarrow cluster[high(x)]. max();
20:
                   \max \leftarrow \text{high}(x) \circ \text{offs};
21:
```

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high(x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

$$T_{\rm del}(u) = T_{\rm del}(\sqrt{u}) + c$$
.

This gives $T_{\text{del}}(u) = \mathcal{O}(\log \log u)$.

Space requirements:

The space requirement fulfills the recurrence

$$S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \mathcal{O}(\sqrt{u}).$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is $S(u) = \mathcal{O}(u)$. Exercise.

Let the "real" recurrence relation be

$$S(k^2) = (k+1)S(k) + c_1 \cdot k; S(4) = c_2$$

▶ Replacing S(k) by $R(k) := S(k)/c_2$ gives the recurrence

$$R(k^2) = (k+1)R(k) + ck; R(4) = 1$$

where $c = c_1/c_2 < 1$.

- Now, we show $R(k) \le k 2$ for squares $k \ge 4$.
 - Obviously, this holds for k = 4.
 - For $k = \ell^2 > 4$ with ℓ integral we have

$$R(k) = (1 + \ell)R(\ell) + c\ell$$

$$\leq (1 + \ell)(\ell - 2) + \ell \leq k - 2$$

▶ This shows that R(k) and, hence, S(k) grows linearly.

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

See Chapter 20 of [CLRS90].