10 van Emde Boas Trees

Dynamic Set Data Structure S:

» S.insert(x)
» S.delete(x)

S.search(x)

v

v

S.min()

v

S.max()

\4

S.succ(x)
S.pred(x)

v

m ©Harald Racke

395

10 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

>

>

| 2

S.insert(x): Inserts x into S.

S. delete(x): Deletes x from S. Usually assumes that x € S.

%)

.member(x): Returns 1 if x € S and 0 otw.

%)

.min(): Returns the value of the minimum element in S.

%)

.max(): Returns the value of the maximum element in S.

S.succ(x): Returns successor of x in S. Returns null if x is
maximum or larger than any element in S. Note that x
needs not to be in S.

S. pred(x): Returns the predecessor of x in S. Returns null
if x is minimum or smaller than any element in S. Note that
X needs not to be in S.

‘m 10 van Emde Boas Trees
©Harald Racke

396

10 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from
a restricted set?

In the following we assume that the keys are from
{0,1,...,u — 1}, where u denotes the size of the universe.

‘m 10 van Emde Boas Trees
©Harald Racke 397

Implementation 1: Array

[o[oJo]1]ofo]o[r[1]0o]oofo[1]0]0]o[0[0]0]

content

size

one array of u bits

Use an array that encodes the indicator function of the dynamic
set.

‘m 10 van Emde Boas Trees
©Harald Racke

398

Implementation 1: Array

Algorithm 21 array.insert(x)
1: content[x] — 1;

Algorithm 22 array.delete(x)
1: content[x] < 0;

Algorithm 23 array.member(x)
1: return content[x];

» Note that we assume that x is valid, i.e., it falls within the
array boundaries.

» Obviously(?) the running time is constant.

‘m 10 van Emde Boas Trees
©Harald Racke

Implementation 1: Array

Algorithm 24 array.max()

1: for (i = size—1; i > 0; i--) do
2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.min()

1: for (i = 0; i < size; i++) do
2: if content[i] = 1 then return i;
3: return null;

> Running time is O(u) in the worst case.

m ©Harald Racke

10 van Emde Boas Trees

400

Implementation 1: Array

Algorithm 26 array.succ(x)

1: for (i = x +1; i < size; i++) do
2 if content[i] = 1 then return i;
3: return null;

Algorithm 27 array.pred(x)

1: for(i=x—-1;i>0; i--) do
2: if content[i] = 1 then return i;
3: return null;

» Running time is O(u) in the worst case.

m ©Harald Racke

10 van Emde Boas Trees

401

Implementation 2: Summary Array

size

summary

Lofofofr]| |[ofofor]| |[r]ofo]o]| |[o]ofo]0]
cluster[0] cluster[1] cluster[2] cluster[3]

» /u cluster-arrays of \/u bits.

» One summary-array of /u bits. The i-th bit in the summary
array stores the bit-wise or of the bits in the i-th cluster.

m ©Harald Racke

10 van Emde Boas Trees

402

Implementation 2: Summary Array

The bit for a key x is contained in cluster number L%J

Within the cluster-array the bit is at position x mod /u.

For simplicity we assume that u = 22% for some k > 1. Then we
can compute the cluster-number for an entry x as high(x) (the
upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual
representation).

‘m 10 van Emde Boas Trees
©Harald Racke

403

Implementation 2: Summary Array

Algorithm 28 member(x)
1: return cluster[high(x)]. member(low(x));

Algorithm 29 insert(x)
1: cluster[high(x)].insert(low(x));
2: summary .insert(high(x));

» The running times are constant, because the corresponding
array-functions have constant running times.

‘m 10 van Emde Boas Trees
©Harald Racke

404

Implementation 2: Summary Array

Algorithm 30 delete(x)
1: cluster[high(x)]. delete(low(x));
2: if cluster[high(x)].min() = null then
3: summary . delete (high(x));

» The running time is dominated by the cost of a minimum
computation on an array of size \/u. Hence, O(\/u).

‘m 10 van Emde Boas Trees
©Harald Racke

405

Implementation 2: Summary Array

Algorithm 31 max()

1: maxcluster — summary .max();

2: if maxcluster = null return null;
3: offs — cluster[maxcluster]. max()
4: return maxcluster o offs;

Algorithm 32 min()

1: mincluster — summary.min();

2: if mincluster = null return null;
3: offs — cluster[mincluster]. min();
4: return mincluster o offs;

| The operator o stands
1 for the concatenation
| of two bitstrings.

| This means if
1x=01112 and

1y = 00012 then

: x oy =01110001,.

» Running time is roughly 2./u = @(,/u) in the worst case.

m ©Harald Racke

10 van Emde Boas Trees

406

Implementation 2: Summary Array

Algorlthm 33 succ(x)

5‘9".”.‘."?5'*.’.'\.’.—‘

— cluster[high(x)]. succ(low(x))
|f m + null then return high(x) o m;

succcluster — summary . succ(high(x));

if succcluster + null then
offs < cluster[succcluster]. min();
return succcluster o offs;

return null;

» Running time is roughly 3./u = O(\/u) in the worst case.

m ©Harald Racke

10 van Emde Boas Trees

407

Implementation 2: Summary Array

Algorlthm 34 pred(x)
— cluster[high(x)]. pred (low(x))

|f m + null then return high(x) o m;
predcluster — summary . pred(high(x));
if predcluster + null then

offs — cluster[predcluster]. max();

return predcluster o offs;
return null;

5‘9".”.‘."?5'*.’.'\.’.—‘

» Running time is roughly 3./u = O(\/u) in the worst case.

‘m 10 van Emde Boas Trees
©Harald Racke

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

size

111(1]0
S
é{}l
:é(‘
Lofofofv]| |[ofofov]| |[r]ofo]o]| |[o]ofo]0]
S(Vu) S(Vu) S(Vuw) S(Vw)
cluster[0] cluster[1] cluster[2] cluster[3]

m ©Harald Racke

10 van Emde Boas Trees

409

Implementation 3: Recursion

We assume that u = 22° for some k.

The data-structure S(2) is defined as an array of 2-bits (end of
the recursion).

‘m 10 van Emde Boas Trees
©Harald Racke 410

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We
only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the
non-recursive case. This is achieved by the fact that an S(4) will
contain S(2)’s as sub-datastructures, which are arrays. Hence, a
call like cluster[1]. min() from within the data-structure S(4) is

not a recursive call as it will call the function array. min().

This means that the non-recursive case is been dealt with while
initializing the data-structure.

‘m 10 van Emde Boas Trees
©Harald Racke

411

Implementation 3: Recursion

Algorithm 35 member(x)

1: return cluster[high(x)]. member(low(x));

» Tmem (W) = Tmem (Vu) + 1.

‘m 10 van Emde Boas Trees
©Harald Racke

412

Implementation 3: Recursion

Algorithm 36 insert(x)

1: cluster[high(x)].insert(low(x));
2: summary . insert(high(x));

» Tins(u) = 2Tins(V/u) + 1.

‘m 10 van Emde Boas Trees
©Harald Racke

413

Implementation 3: Recursion

Algorithm 37 delete(x)

1: cluster[high(x)]. delete(low(x));
2: if cluster[high(x)].min() = null then
3: summary . delete (high(x));

> Tger(u) = 2Tger (1) + Tmin (V) + 1.

‘m 10 van Emde Boas Trees
©Harald Racke

414

Implementation 3: Recursion

Algorithm 38 min()

1: mincluster — summary . min();

2: if mincluster = null return null;
3: offs — cluster[mincluster]. min();
4: return mincluster o offs;

» Tmin(u) = 2Tmin(v/u) + 1.

‘m 10 van Emde Boas Trees
©Harald Racke

415

Implementation 3: Recursion

Algorithm 39 succ(x)

1: m < cluster[high(x)]. succ(low(x))

2: if m =+ null then return high(x) o m;

3: succcluster — summary . succ(high(x));
4.
5
6
7

if succcluster + null then
offs — cluster[succcluster]. min();
return succcluster o offs;

: return null;

> Tsucc(U) = 2Tsuce (VU) + Tmin(VU) + 1.

m ©Harald Racke

10 van Emde Boas Trees

416

Implementation 3: Recursion

Tmem(#) = Tmem(vVu) + 1:
Set £ :=1logu and X(£) := Tmem(2%).Then

X)) = Tmem(Ze) = Tmem(U) = Tmem (VU) + 1
= Tmem(2%) +1=x(4) +1 .

Using Master theorem gives X () = @(log¥), and hence
Tmem (1) = O(loglogu).

‘m 10 van Emde Boas Trees
©Harald Racke

417

Implementation 3: Recursion

Tins () = 2Tins(Vu) + 1.
Set £ :=1logu and X (¥) := Tins(2). Then

X(£) = Tins(2¥) = Tins (1) = 2Tins (V) + 1

— 2Tis(27) +1=2x(4) +1 .

Using Master theorem gives X(¥) = O(¥), and hence
Tins(u) = O(logu).

The same holds for Tmax (1) and Tin ().

‘m 10 van Emde Boas Trees
©Harald Racke

418

Implementation 3: Recursion

Tae1(1) = 2Tge1(vVU) + Tmin(VUu) + 1 < 2Tge1(Vu) + clog(u).

Set £ :=1logu and X () := Tga(2%). Then

X(0) = Taa1(2Y) = Tae1(u) = 2Tger (VU) + clogu
= 2Tua (22) + el = 2X (L) + ¢l .

Using Master theorem gives X () = ©({log¥), and hence
Tae1(u) = O(loguloglogu).

The same holds for Tpreq (1) and Tsyce(u).

‘m 10 van Emde Boas Trees
©Harald Racke

419

Implementation 4:

van Emde Boas Trees

min summary size
3
=
K

S

é{"w

:ss"
[o[ofofof | |[ofofo]r]| |[r]ofo]o]| |[o]1]o]0]
S(Vu) S(Vu) S(Vuw) S(Vw)
cluster[0] cluster[1] cluster[2] cluster[3]

» The bit referenced by min is not set within

sub-datastructures.

» The bit referenced by max is set within sub-datastructures

(if max # min).

m ©Harald Racke

10 van Emde Boas Trees

420

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

» Recursive calls for min and max are constant time.

» min = null means that the data-structure is empty.

» min = max # null means that the data-structure contains
exactly one element.

» We can insert into an empty datastructure in constant time
by only setting min = max = x.

» We can delete from a data-structure that just contains one
element in constant time by setting min = max = null.

‘m 10 van Emde Boas Trees
©Harald Racke

421

Implementation 4: van Emde Boas Trees

Algorithm 40 max()

1: return max;

Algorithm 41 min()

1: return min;

» Constant time.

‘m 10 van Emde Boas Trees
©Harald Racke

422

Implementation 4: van Emde Boas Trees

Algorithm 42 member(x)

1: if x = min then return 1; // TRUE
2: return cluster[high(x)]. member(low(x));

» Tmem(U) = Tmem (V1) +1 = T(u) = O(loglogu).

‘m 10 van Emde Boas Trees
©Harald Racke

423

Implementation 4: van Emde Boas Trees

Algorithm 43 succ(x)

1: if min # null A x < min then return min;
2: maxincluster — cluster[high(x)]. max();
3: if maxincluster = null A low(x) < maxincluster then

4: offs — cluster[high(x)]. succ(low(x));
5 return high(x) - offs;

6: else

7: succcluster — summary . succ(high(x));
8: if succcluster = null then return null;
9: offs — cluster[succcluster].min();
10: return succcluster o offs;

> Tsuce(U) = Tsuce(VU) + 1 = Tsucc(u) = O(loglogu).

‘m 10 van Emde Boas Trees
©Harald Racke

424

Implementation 4: van Emde Boas Trees

Algorithm 44 insert(x)

. if min = null then
min = X; max = X;

1

2

3

4 if x < min then exchange x and min;
5 if cluster[high(x)]. min = null; then
6: summary . insert(high(x));

7 cluster[high(x)].insert(low(x));
8 else

9 cluster[high(x)].insert(low(x));
0 if x > max then max = x;

» Tins(u) = Tins(vV/u) + 1 = Tins(u) = O(loglogu).

‘m 10 van Emde Boas Trees
©Harald Racke

425

Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 7 takes constant time as the
if-condition in Line 5 ensures that we are inserting in an empty
sub-tree.

The only non-constant recursive calls are the call in Line 6 and in
Line 9. These are mutually exclusive, i.e., only one of these calls
will actually occur.

From this we get that Tins (1) = Tins(v/u) + 1.

‘m 10 van Emde Boas Trees
©Harald Racke 426

Implementation 4: van Emde Boas Trees

» Assumes that x is contained in the structure.

Algorithm 45 delete(x)

1: if min = max then

2 min = null; max = null;

3: else

4 if x = min then find new minimum

5: firstcluster — summary . min();

6 offs — cluster| firstcluster]. min();

7 x « firstcluster o offs;

8 min < x;

9 cluster[high(x)]. delete(low(x)); delete
continued...

‘m 10 van Emde Boas Trees
©Harald Racke

427

Implementation 4: van Emde Boas Trees

Algorithm 45 delete(x)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

...continued fix maximum
if cluster[high(x)].min() = null then
summary . delete (high(x));
if x = max then
summax — summary . max();
if summax = null then max — min;
else
offs — cluster[summax]. max();
max — summax o offs
else
if x = max then
offs — cluster[high(x)]. max();
max < high(x) o offs;

m ©Harald Racke

10 van Emde Boas Trees

428

Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and
Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the
cluster where x was deleted is now empty. But this means that
the call in Line 9 deleted the last element in cluster[high(x)].
Such a call only takes constant time.

Hence, we get a recurrence of the form
Tael(u) = Tget(VU) + C .

This gives Tgel(1) = O(loglogu).

‘m 10 van Emde Boas Trees
©Harald Racke

429

10 van Emde Boas Trees

Space requirements:
» The space requirement fulfills the recurrence

Su) = Vu+1)SHu) + 0 u) .

» Note that we cannot solve this recurrence by the Master
theorem as the branching factor is not constant.

» One can show by induction that the space requirement is
S(u) = O(u). Exercise.

‘m 10 van Emde Boas Trees
©Harald Racke

430

» Let the “real” recurrence relation be

S(k?) = (k+1)S(k) +c1 - k; S(4) =

» Replacing S(k) by R(k) := S(k)/c> gives the recurrence
R(k?) = (k+1)R(k) + ck; R(4) = 1

where ¢ = ¢ /c2 < 1.
» Now, we show R(k) < k — 2 for squares k > 4.

> Obviously, this holds for k = 4.
» For k = £? > 4 with £ integral we have

R(k) =1 +L)RL) +cl
<1+ -2)+C0<k-2

» This shows that R(k) and, hence, S(k) grows linearly.

van Emde Boas Trees

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

See Chapter 20 of [CLRS90].

‘m 10 van Emde Boas Trees
©Harald Racke

432

	van Emde Boas Trees

