A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

M <0

repeat
let P = {P1,..., Py} be maximal set of
vertex-disjoint, shortest augmenting path w.r.t. M.
M~M& (PruU---UPy)

until 7 =0

return M

SN R

We call one iteration of the repeat-loop a phase of the algorithm.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

581

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

| 2

Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.
The connected components of G are cycles and paths.

The graph contains k ¢ |[M*| — |[M| more red edges than
blue edges.

Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke 582

Analysis

> Let Py,..., P, be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;|).

» Me<MeoPLU---UP,)=Me&P,®---&Pg.
» Let P be an augmenting path in M’.

Lemma 5
Theset A« Ma (M @P)=(PLU---UPy)®P contains at least

(k + 1) edges.

m 20 The Hopcroft-Karp Algorithm
©Harald Racke 583

Analysis

Proof.

> The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M'| = |[M| + k + 1.

» Each of these paths is of length at least £.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

584

Analysis

Lemma 6

P is of length at least € + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
» If P does not intersect any of the Py, ..., Py, this follows
from the maximality of the set {Py,..., Py}.

Otherwise, at least one edge from P coincides with an edge
from paths {P;,..., Py}.

This edge is not contained in A.
Hence, |A| < k€ + |P| — 1.

The lower bound on |A| gives (k +1)f < |A| < k€ + |P| -1,
and hence |P| = ¢ + 1.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

585

Analysis

If the shortest augmenting path w.r.t. a matching M has £ edges

then the cardinality of the maximum matching is of size at most
|V]

IM| + l+1"

Proof.

The symmetric difference between M and M* contains

IM*| — |M| vertex-disjoint augmenting paths. Each of these

paths contains at least £ + 1 vertices. Hence, there can be at

1V
most ;¢ of them.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

> After iteration |/|V]] the length of a shortest augmenting
path must be at least [/|V|] +1 = /|V].

» Hence, there can be at most |V|/(y/|V|+ 1) < +/|V]|
additional augmentations.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

587

Analysis

Lemma 8
One phase of the Hopcroft-Karp algorithm can be implemented
in time O (m).

» Do a breadth first search starting at all free vertices in the
left side L.

(alternatively add a super-startnode; connect it to all free vertices
in L and start breadth first search from there)

» The search stops when reaching a free vertex. However, the
current level of the BFS tree is still finished in order to find a
set F of free vertices (on the right side) that can be reached
via shortest augmenting paths.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

588

Analysis

>

Then a maximal set of shortest path from the leftmost layer
of the tree construction to nodes in F needs to be
computed.

Any such path must visit the layers of the BFS-tree from left
to right.

To go from an odd layer to an even layer it must use a
matching edge.

To go from an even layer to an odd layer edge it can use
edges in the BFS-tree or edges that have been ignored
during BFS-tree construction.

We direct all edges btw. an even node in some layer £ to an
odd node in layer £ + 1 from left to right.

A DFS search in the resulting graph gives us a maximal set
of vertex disjoint path from left to right in the resulting
graph.

‘m 20 The Hopcroft-Karp Algorithm
©Harald Racke

589

O

0
/1\

O

Q
X
/\

OO0 O O0OJd00D O
O

O

OO0 O O 0QOO0O0O0

__

! ; Compute an alternating tree in BFS fashion starting from all free vertices on the left :
(L) finish on the level where you see the first free vertex from the right set R. |

&
-

4

*
+
Py

300 0O
OO 0.0

*

(2

iffele

*

()
/ LY -
-

)
.
>
.
)
1

ole;
OO0 O O

__

'Th|s fixes length of shortest alternating path; every shortest alternating path must :
IVISIt layers from left to right (green edges are not helpful) |

Q Q'Q

QL.

OO DI 00D O

(O,

O
o’
&

*

O

O 0 O O

__

O
/ \ \
. CD\:\\)/ \\
M *C »CX L C Q .
AN \ N o
| L TOH joe)
@) \| \ /V

__

! | Every shortest alternating path is a path in this graph from a left free vertex to a !
| rlght free vertex; find a maximal vertex disjoint set of path by a modified DFS |
