Analysis

How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in
the tight subgraph (because for a perfect matching we need
to find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, |Vodd! = IT (Veven)| < |Vevenl|, and all odd vertices are
saturated in the current matching.

19 Weighted Bipartite Matching

m ©Harald Racke

579

Analysis

» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly be deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time ©(n?)
(keeping track of the tight edges).

» An augmentation takes at most O(n) time.
» In total we otain a running time of @ (n*).

» A more careful implementation of the algorithm obtains a
running time of O(n3).

19 Weighted Bipartite Matching

m ©Harald Racke

580

A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let P = {Pq,...,Py} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M~Me&(PruU---UPy)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm

m ©Harald Racke

581

Analysis

Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |M| more red edges than
blue edges.

» Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

m ©Harald Racke

20 The Hopcroft-Karp Algorithm

582

Analysis

> Let Pq,..., Py be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

» MEMo(PrU---UPy)=Mo&P1®---oPy.

» Let P be an augmenting path in M’.

Lemma 5
ThesetA2 Mo (M ®P)=(PyU---UPy) ®P contains at least
(k +1)¥ edges.

20 The Hopcroft-Karp Algorithm

m ©Harald Racke

583

Analysis

Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M’| = |M| + k + 1.

» Each of these paths is of length at least £.

20 The Hopcroft-Karp Algorithm

m ©Harald Racke

584

Analysis

Lemma 6

P is of length at least { + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.

» This edge is not contained in A.
» Hence, |A| < k€ + |P| — 1.

» The lower bound on |A| gives (k + 1)¥ < |A| < k¥ + |P| -1,
and hence |P| = ¢ + 1.

m ©Harald Racke

20 The Hopcroft-Karp Algorithm

585

Analysis

If the shortest augmenting path w.r.t. a matching M has ¥ edges

then the cardinality of the maximum matching is of size at most
V]

Proof.

The symmetric difference between M and M* contains

IM*| — |M| vertex-disjoint augmenting paths. Each of these

paths contains at least £ + 1 vertices. Hence, there can be at

V|
most ;. of them.

20 The Hopcroft-Karp Algorithm

m ©Harald Racke

586

Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration [/|V]] the length of a shortest augmenting
path must be at least [/|V]] + 1 = +/|V].

» Hence, there can be at most |V|/(/|V]| + 1) < /|V]|
additional augmentations.

m 20 The Hopcroft-Karp Algorithm
©Harald Ricke

587

Analysis

Lemma 8
One phase of the Hopcroft-Karp algorithm can be implemented
in time O(m).

» Do a breadth first search starting at all free vertices in the
left side L.

(alternatively add a super-startnode; connect it to all free vertices
in L and start breadth first search from there)

» The search stops when reaching a free vertex. However, the
current level of the BFS tree is still finished in order to find a
set F of free vertices (on the right side) that can be reached
via shortest augmenting paths.

m 20 The Hopcroft-Karp Algorithm
©Harald Ricke

588

Analysis

» Then a maximal set of shortest path from the leftmost layer
of the tree construction to nodes in F needs to be
computed.

» Any such path must visit the layers of the BFS-tree from left
to right.

» To go from an odd layer to an even layer it must use a
matching edge.

» To go from an even layer to an odd layer edge it can use
edges in the BFS-tree or edges that have been ignored
during BFS-tree construction.

» We direct all edges btw. an even node in some layer £ to an
odd node in layer £ + 1 from left to right.

» A DFS search in the resulting graph gives us a maximal set
of vertex disjoint path from left to right in the resulting
graph.

m 20 The Hopcroft-Karp Algorithm
©Harald Racke

589

O O O O
o O—0O
O OE—+O O
n TOT—TOT—F0] o
~O O
O(/@ O O O
~5 O:/@ O O
O O

__

2

300 0O
O 9 0,0

*

*

b1
L) .
. .
K \\ 4y~ <
. A .
': . ~.:
4 “ ‘ﬂ’ /O
) .
@ . A P O:/
RPN N
o ot]
v
. [
-
3K
.

g o

w
-
- =

‘4
L}
.

.

-
-
ly =

OO0 O O

__

'Th|s fixes length of shortest alternating path; every shortest alternating path must '
I VISIt layers from left to right (green edges are not helpful) ;

Q Q'Q

g
2 el

O T OO0 0 O

(g O

O
o
&

*

O

O 0O O O

__

__

O
o
o

J 00 0 0O O

VC O \‘\

-

/\

*Or—-O_

Q

__

! , Every shortest alternating path is a path in this graph from a left free vertex to a :
l rlght free vertex; find a maximal vertex disjoint set of path by a modified DFS |

How to find an augmenting path?

Construct an alternating tree.

}) O

O
ot
O

even nodes
odd nodes

Case 4:

O
O
Ol Y is already contained
O

O

in T as an even vertex

can’t ignore y

Thecyclew -« y —x - w
is called a blossom.

w is called the base of the
blossom (even node!!!).
The path u-w path is called
the stem of the blossom.

S

21 Maximum Matching in General Graphs

m ©Harald Racke

591

