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How do we find S?

» Start on the left and compute an alternating tree, starting at
any free node u.

> If this construction stops, there is no perfect matching in
the tight subgraph (because for a perfect matching we need
to find an augmenting path starting at u).

» The set of even vertices is on the left and the set of odd
vertices is on the right and contains all neighbours of even
nodes.

» All odd vertices are matched to even vertices. Furthermore,
the even vertices additionally contain the free vertex u.
Hence, |Vodd! = IT (Veven)| < |Vevenl|, and all odd vertices are
saturated in the current matching.

19 Weighted Bipartite Matching
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» The current matching does not have any edges from V,qq to
outside of L \ Veyen (edges that may possibly be deleted by
changing weights).

» After changing weights, there is at least one more edge
connecting Veven to a node outside of Vqq. After at most n
reweights we can do an augmentation.

» A reweighting can be trivially performed in time ©(n?)
(keeping track of the tight edges).

» An augmentation takes at most O(n) time.
» In total we otain a running time of @ (n*).

» A more careful implementation of the algorithm obtains a
running time of O(n3).

19 Weighted Bipartite Matching
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A Fast Matching Algorithm

Algorithm 53 Bimatch-Hopcroft-Karp(G)

" M<0

2: repeat

3 let P = {Pq,...,Py} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.
5: M~Me&(PruU---UPy)

6: until 7 =0

7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

20 The Hopcroft-Karp Algorithm
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Lemma 4
Given a matching M and a maximal matching M* there exist
IM*| — |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

» Similar to the proof that a matching is optimal iff it does not
contain an augmenting paths.

» Consider the graph G = (V,M & M*), and mark edges in
this graph blue if they are in M and red if they are in M*.

» The connected components of G are cycles and paths.

» The graph contains k & |[M*| — |M| more red edges than
blue edges.

» Hence, there are at least k components that form a path
starting and ending with a blue edge. These are
augmenting paths w.r.t. M.

m ©Harald Racke
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Analysis

> Let Pq,..., Py be a maximal collection of vertex-disjoint,
shortest augmenting paths w.r.t. M (let £ = |P;]).

» MEMo(PrU---UPy)=Mo&P1®---oPy.

» Let P be an augmenting path in M’.

Lemma 5
ThesetA2 Mo (M ®P)=(PyU---UPy) ®P contains at least
(k +1)¥ edges.

20 The Hopcroft-Karp Algorithm
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Proof.

» The set describes exactly the symmetric difference between
matchings M and M’ @ P.

» Hence, the set contains at least k + 1 vertex-disjoint
augmenting paths w.r.t. M as |[M’| = |M| + k + 1.

» Each of these paths is of length at least £.

20 The Hopcroft-Karp Algorithm
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Lemma 6

P is of length at least { + 1. This shows that the length of a
shortest augmenting path increases between two phases of the
Hopcroft-Karp algorithm.

Proof.
» If P does not intersect any of the Py,..., Py, this follows
from the maximality of the set {Py,...,Py}.

» Otherwise, at least one edge from P coincides with an edge
from paths {Py,...,Py}.

» This edge is not contained in A.
» Hence, |A| < k€ + |P| — 1.

» The lower bound on |A| gives (k + 1)¥ < |A| < k¥ + |P| -1,
and hence |P| = ¢ + 1.
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If the shortest augmenting path w.r.t. a matching M has ¥ edges

then the cardinality of the maximum matching is of size at most
V]

Proof.

The symmetric difference between M and M* contains

IM*| — |M| vertex-disjoint augmenting paths. Each of these

paths contains at least £ + 1 vertices. Hence, there can be at

V|
most ;. of them.

20 The Hopcroft-Karp Algorithm

m ©Harald Racke

586




Analysis

Lemma 7
The Hopcroft-Karp algorithm requires at most 2+/|V| phases.

Proof.

» After iteration [/|V]] the length of a shortest augmenting
path must be at least [/|V]] + 1 = +/|V].

» Hence, there can be at most |V|/(/|V]| + 1) < /|V]|
additional augmentations.

m 20 The Hopcroft-Karp Algorithm
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Lemma 8
One phase of the Hopcroft-Karp algorithm can be implemented
in time O(m).

» Do a breadth first search starting at all free vertices in the
left side L.

(alternatively add a super-startnode; connect it to all free vertices
in L and start breadth first search from there)

» The search stops when reaching a free vertex. However, the
current level of the BFS tree is still finished in order to find a
set F of free vertices (on the right side) that can be reached
via shortest augmenting paths.

m 20 The Hopcroft-Karp Algorithm
©Harald Ricke

588

Analysis

» Then a maximal set of shortest path from the leftmost layer
of the tree construction to nodes in F needs to be
computed.

» Any such path must visit the layers of the BFS-tree from left
to right.

» To go from an odd layer to an even layer it must use a
matching edge.

» To go from an even layer to an odd layer edge it can use
edges in the BFS-tree or edges that have been ignored
during BFS-tree construction.

» We direct all edges btw. an even node in some layer £ to an
odd node in layer £ + 1 from left to right.

» A DFS search in the resulting graph gives us a maximal set
of vertex disjoint path from left to right in the resulting
graph.

m 20 The Hopcroft-Karp Algorithm
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How to find an augmenting path?

Construct an alternating tree.

}) O

O
ot
O

even nodes
odd nodes

Case 4:

O
O
Ol Y is already contained
O

O

in T as an even vertex

can’t ignore y

Thecyclew -« y —x - w
is called a blossom.

w is called the base of the
blossom (even node!!!).
The path u-w path is called
the stem of the blossom.

S
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