18 Augmenting Paths for Matchings

Definitions.
» Given a matching M in a graph G, a vertex that is not
incident to any edge of M is called a free vertex w.r..t. M.

» For a matching M a path P in G is called an alternating path
if edges in M alternate with edges not in M.

» An alternating path is called an augmenting path for
matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no
augmenting path w.r.t. M.

‘m 18 Augmenting Paths for Matchings
©Harald Racke

557

Augmenting Paths in Action

XIN]
X

‘m 18 Augmenting Paths for Matchings
©Harald Racke

558

Augmenting Paths in Action

‘m 18 Augmenting Paths for Matchings
©Harald Racke

558

18 Augmenting Paths for Matchings

Proof.
= If M is maximum there is no augmenting path P, because
we could switch matching and non-matching edges along P.
This gives matching M’ = M & P with larger cardinality.
< Suppose there is a matching M’ with larger cardinality.
Consider the graph H with edge-set M’ & M (i.e., only edges
that are in either M or M’ but not in both).

Each vertex can be incident to at most two edges (one from
M and one from M’). Hence, the connected components are
alternating cycles or alternating path.

As |M’| > |M]| there is one connected component that is a
path P for which both endpoints are incident to edges from
M'. P is an alternating path.

‘m 18 Augmenting Paths for Matchings
©Harald Racke

559

18 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching
using this path. When you arrive at a matching for which no
augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex
w.r.t. M. Further let P denote an augmenting path w.r.t. M and
let M’ = M @ P denote the matching resulting from augmenting
M with P. If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M'.

: The above theorem allows for an easier implementation of an augment-
1 ing path algorithm. Once we checked for augmenting paths starting
| from u we don’t have to check for such paths in future rounds.

‘m 18 Augmenting Paths for Matchings
©Harald Racke

560

18 Augmenting Paths for Matchings

Proof

» Assume there is an augmenting
path P’ w.r.t. M’ starting at u.

» If P’ and P are node-disjoint, P’ is
also augmenting path w.r.t. M (¢).

> Let 1’ be the first node on P’ that
is in P, and let e be the matching
edge from M’ incident to u’.

» u’ splits P into two parts one of
which does not contain e. Call this
part P;. Denote the sub-path of P’
from u to u’ with P;.

> P) o P is augmenting path in M (4).

‘m 18 Augmenting Paths for Matchings
©Harald Racke

561

How to find an augmenting path?

Construct an alternating tree.

/C O

even nodes
odd nodes

Case 1:
y is free vertex not
contained in T

o4
AN

vd
N

PEON
QO

you found
alternating path

& O O O O

Do

/\
O 0O 3 0O O O

O

‘m 18 Augmenting Paths for Matchings
©Harald Racke

How to find an augmenting path?

Construct an alternating tree.

/C

()
-/

PEON
QO

s

o4
AN

vd
N

/\
O 0O 3 0O O O

o

O
O
O
O
O}
O

m ©Harald Racke

even nodes
odd nodes

Case 2:

vy is matched vertex
not in T; then
mate[y] ¢ T

grow the tree

g
‘e,
.
.
.

©o—0

18 Augmenting Paths for Matchings

563

How to find an augmenting path?

Construct an alternating tree.

e) O | even nodes
O |\
odd nodes
/ Case 3:
”) q O Q| Vis already contained
N \ in T as an odd vertex
5
...
SO Ol ;
D ignore successor y
....
....
O]

% o

0 O
O

‘m 18 Augmenting Paths for Matchings
©Harald Racke

How to find an augmenting path?

Construct an alternating tree.

even nodes

/C

O

odd nodes

Case 4:
v is already contained

PEON
QO

s

in T as an even vertex

3 O 0O O

. \
ol
3
.
-
e
‘e
«

g
Q

can’t ignhore y

g
g
g
.

-
L]
,

@ O O O O

does not happen in
bipartite graphs

/\
35

O

m ©Harald Racke

18 Augmenting Paths for Matchings

565

Algorithm 52 BiMatch (G, match)

1: for x € V do mate[x] < 0;
2: v < 0; free — n;
3: while free>1and» <n do

»

r—r+1
if mate[r] =0 then
fori =1 to m do parent[i'] — 0
Q < 0; Q.append(r); aug — false;
while aug = falseand Q + § do
x — Q.dequeue();
for y € A do
if mate[y] =0 then
augm(mate, parent, y);
aug - true;
free — free —1;
else
if parent[y] =0 then
parent[y] < x;
Q.enqueue(mate[y]);

graph G = (SU S',E)
S={1,...,n}
S ={1,...,n'}

| The lecture version of the slides
I contains a step-by-step explana-
[-

| tion of the algorithm.

