5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of *n*. Then constant additive terms do not play an important role.
- An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

٦	Π		Г		
	L	111		© Harald	Räcke

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}^+_0 .

► $g \in o(f)$: $\lim_{n \to \infty} \frac{g}{f(n)} = 0$ ► $g \in w(f)$: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$	Note that for the version of the Lan- dau notation defined here, we as- sume that f and g are positive func- tions. There also exist versions for arbitrary functions, and for the case that the limes is not infinity.
© Harald Räcke 5 Asymptotic Notation	32

Asymptotic Notation

Formal Definition

Let *f* denote functions from \mathbb{N} to \mathbb{R}^+ .

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f) = \{g \mid \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\blacktriangleright \Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- $\bullet \ o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- $\blacktriangleright \omega(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \ge n_0 : [g(n) \ge c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than f)

THUR CHarald Räcke

30

5 Asymptotic Notation

31

Asymptotic Notation

Abuse of notation

- **1.** People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(q(n))$, when they mean $f \in \mathcal{O}(q)$, with $f : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto z(n), z \in o(q)$ such that h(n) = f(n) + z(n).

2. In this context $f(n)$ does not mean the function f evaluated at n , but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function). 3. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2}n + o(n)$ comparisons.

© Harald Räcke

Asymptotic Notation

Abuse of notation

4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

© Harald Räcke	5 Asymptotic Notation

Asymptotic Notation in Equations

How do we interpret an expression like:

 $2n^2 + \mathcal{O}(n) = \Theta(n^2)$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

5 Asymptotic Notation

35

33

Asymptotic Notation in Equations

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Marald Räcke

5 Asymptotic Notation

GHarald Räcke

5 Asymptotic Notation

34

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

 $n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$

Note that the equation does not hold.

Marald Räcke

39

5 Asymptotic Notation

38

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.
 - Algorithm B. Running time $g(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

החוחר	5 Asymptotic Notation	
🛛 💾 🛛 🖉 🖾 🖾 🛛 🖾 🖉 🖉 🖉		41

5 Asymptotic Notation Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures – The Basic Toolbox, Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), McGraw-Hill, 2009

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.

© Harald Räcke

5 Asymptotic Notation

42

