Part Il

Foundations

m ©Harald Racke

Vocabularies

a-b “atimesb”’
“a multiplied by b”
“a into b”

m ©Harald Racke

Vocabularies

a-b “atimesb”

“a multiplied by b”
“ainto b’

“a divided by b”
“a by b”

“a over b”

SIS

(a: numerator (Zahler), b: denominator (Nenner))

m ©Harald Racke

Vocabularies

a-b “atimesb”

“a multiplied by b”
“ainto b’

“a divided by b”
“a by b”

“a over b”

SIS

(a: numerator (Zahler), b: denominator (Nenner))

al “a raised to the b-th power”
“a to the b-th”
“a raised to the power of b”
“a to the power of b”
“a raised to b”
“a to the b”
“a raised by the exponent of b”

m ©Harald Racke

Vocabularies

n! “n factorial”

m ©Harald Racke

Vocabularies

n! “n factorial”

(’,:) “n choose k”

m ©Harald Racke

Vocabularies

n! “n factorial”
(’,:) “n choose k”

x; “x subscript i”
“x sub i”
HX l‘"

m ©Harald Racke

Vocabularies

n! “n factorial”
(2) “n choose k”

x; “x subscript i”
“x sub i”
llx l‘"

log, a “log to the base b of a”

“log a to the base b”

m ©Harald Racke

Vocabularies

n! “n factorial”
(Z) “n choose k”

x; “x subscript i”
“x sub i”
llx i”

log, a “log to the base b of a”
“log a to the base b”

fiX—-Y,x—x?

f is a function that maps from domain (Definitionsbereich) X to
codomain (Zielmenge) Y. Theset {y e Y |Ix € X: f(x) =y}
is the image or the range of the function
(Bildbereich/Wertebereich).

T c
©Harald Racke

3 Goals

» Gain knowledge about efficient algorithms for important
problems, i.e., learn how to solve certain types of problems
efficiently.

‘m 3 Goals = =
©Harald Racke

3 Goals

» Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

» Learn how to analyze and judge the efficiency of algorithms.

‘m 3 Goals = =
©Harald Racke

3 Goals

» Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

» Learn how to analyze and judge the efficiency of algorithms.

» Learn how to design efficient algorithms.

m 3 Goals = =
©Harald Racke

4 Modelling Issues

1 What do you measure?

» Memory requirement

m ©Harald Racke

4 Modelling Issues

4 Modelling Issues

1 What do you measure?

» Memory requirement

» Running time

m ©Harald Racke

4 Modelling Issues

4 Modelling Issues

1 What do you measure?

» Memory requirement

» Running time

» Number of comparisons

m ©Harald Racke

4 Modelling Issues

4 Modelling Issues

1 What do you measure?

» Memory requirement

v

Running time

v

Number of comparisons

v

Number of multiplications

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

1 What do you measure?

» Memory requirement

v

Running time

v

Number of comparisons

v

Number of multiplications

v

Number of hard-disc accesses

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

1 What do you measure?

» Memory requirement

» Running time

» Number of comparisons

» Number of multiplications

» Number of hard-disc accesses

» Program size

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

1 What do you measure?

» Memory requirement

» Running time

» Number of comparisons

» Number of multiplications

» Number of hard-disc accesses
» Program size

» Power consumption

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

1 What do you measure?

» Memory requirement

» Running time

» Number of comparisons

» Number of multiplications

» Number of hard-disc accesses
» Program size

» Power consumption

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs

IM\ 4 Modelling Issues
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs

» How do you choose your inputs?
» May be very time-consuming.

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
» Very reliable results if done correctly.

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
» Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

‘m 4 Modelling Issues =
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
» Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.

‘m 4 Modelling Issues =
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
» Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.

» Gives asymptotic bounds like “this algorithm always runs in
time O (n?)”.

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
» Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.
» Gives asymptotic bounds like “this algorithm always runs in
time O (n?)”.
» Typically focuses on the worst case.

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

How do you measure?

» Implementing and testing on representative inputs
» How do you choose your inputs?
» May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.
» Gives asymptotic bounds like “this algorithm always runs in
time O (n?)”.
» Typically focuses on the worst case.
» Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the
worst case”.

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

Input length
The theoretical bounds are usually given by a function f: N — N

that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (number of bits)

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (number of bits)

> the number of arguments

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (number of bits)

> the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.

‘m 4 Modelling Issues =
©Harald Racke

Model of Computation

How to measure performance

m 4 Modelling Issues
©Harald Racke

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

‘m 4 Modelling Issues =
©Harald Racke

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

‘m 4 Modelling Issues = =
©Harald Racke

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.

‘m 4 Modelling Issues = =
©Harald Racke

Turing Machine

» Very simple model of computation.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

|

state holds program and can
act as constant size memory

m ©Harald Racke

4 Modelling Issues

=)

Turing Machine

» Very simple model of computation.
» Only the “current” memory location can be altered.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

h state holds program and can
act as constant size memory

‘m 4 Modelling Issues
©Harald Racke

Turing Machine

» Very simple model of computation.
» Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial
vs. exponential time.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

h state holds program and can
act as constant size memory

‘m 4 Modelling Issues =] =
©Harald Racke

Turing Machine

» Very simple model of computation.

» Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial
vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower
bound.

-)[1]ofo)1]o]o]1]o]of1]o]o]1][1]0]-

control
unit

<_ state holds program and can
act as constant size memory

‘m 4 Modelling Issues = =
©Harald Racke

Turing Machine

» Very simple model of computation.
» Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial

vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower

bound.

= Not a good model for developing efficient algorithms.

-)[1]ofo)1]o]o]1]o]of1]o]o]1][1]0]-

control
unit

[T

state holds program and can
act as constant size memory

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

» Input tape and output tape (sequences of zeros and ones

unbounded length).

input tape

—

-1 OI;!l ofo]1]~

control
unit

memory

R[0]

R[1]

R[2]

SIEE

output tape

| R3]

R[4]

R[5]

m ©Harald Racke

4 Modelling Issues

Random Access Machine (RAM)

» Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

input tape

—

m ©Harald Racke

memory
R[1]
R[2]
control |, N
unit R[3]
R[4]
4 R[5]
Aot |]|
output tape —
4 Modelling Issues a = =

Random Access Machine (RAM)

» Input tape and output tape (sequences of zeros and ones;

unbounded length).

» Memory unit: infinite but countable number of registers

R[O],R[1],R[2],....

> Registers hold integers. input tape

—

m ©Harald Racke

memory
R[1]
R[2]
control |, N
unit R[3]
R[4]
4 R[5]
Aot |]|
output tape —
4 Modelling Issues a = =

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;
unbounded length).

» Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

> Registers hold integers. input tape — memory
> Indirect addressing.)]0 TIOJO[T |1 [ko
R[1]
R[2]

control |, N
unit ‘| RI3]
R[4]
L R[5]

TN T 11

output tape —>

m 4 Modelling Issues =] =
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])

m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i

m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i
» output operations (R[i] — output tape)

m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i
» output operations (R[i] — output tape)
» WRITE 1

m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i
» output operations (R[i] — output tape)
» WRITE 1
> register-register transfers

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i
» output operations (R[i] — output tape)
» WRITE 1
> register-register transfers
» R[j] := R[i]

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations

> input operations (input tape — R[1])
» READ i

» output operations (R[i] — output tape)
» WRITE 1

> register-register transfers
» R[j] := R[i]
» R[j] := 4

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations

> input operations (input tape — R[1])
» READ i

» output operations (R[i] — output tape)
» WRITE 1

> register-register transfers
» R[j] := R[i]
» R[j] := 4

» indirect addressing

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i
» output operations (R[i] — output tape)
» WRITE 1
> register-register transfers
» R[j] := R[i]
» R[j] := 4
» indirect addressing
» R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1])
» READ i
» output operations (R[i] — output tape)
» WRITE 1
> register-register transfers
» R[j] := R[i]
» R[j] := 4
» indirect addressing
» R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register
» R[R[i]]:=R[j]
loads the content of the j-th into the R[i]-th register

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons

m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

‘m 4 Modelling Issues =
©Harald Racke

Random Access Machine (RAM)
Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;

reads the next operation to perform from register R[x]
> jumpz x R[]

jump to x if R[i] =0
if not the instruction counter is increased by 1;

‘m 4 Modelling Issues
©Harald Racke

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);

‘m 4 Modelling Issues =]
©Harald Racke

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /

m 4 Modelling Issues =]
©Harald Racke

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /
» R[i] R[j] + R[k];
R[i] := -R[k];

m 4 Modelling Issues =]
©Harald Racke

Model of Computation

» uniform cost model
Every operation takes time 1.

m 4 Modelling Issues
©Harald Racke

Model of Computation

» uniform cost model
Every operation takes time 1.

» logarithmic cost model

The cost depends on the content of memory cells:

IM\ 4 Modelling Issues
©Harald Racke

Model of Computation

» uniform cost model
Every operation takes time 1.
» logarithmic cost model
The cost depends on the content of memory cells:
» The time for a step is equal to the largest operand involved;

‘m 4 Modelling Issues
©Harald Racke

Model of Computation

» uniform cost model
Every operation takes time 1.
» logarithmic cost model
The cost depends on the content of memory cells:
» The time for a step is equal to the largest operand involved;
» The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

‘m 4 Modelling Issues
©Harald Racke

Model of Computation

» uniform cost model
Every operation takes time 1.
» logarithmic cost model
The cost depends on the content of memory cells:

» The time for a step is equal to the largest operand involved;
» The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest
value stored in a register may not exceed 2%, where usually
w = log, n.

‘m 4 Modelling Issues = =
©Harald Racke

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

17 < 2;

2. fori=1-ndo
3: ¥ —1r?

4: return v

m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

17 < 2;

2. fori=1-ndo
3: ¥ —1r?

4: return v

> running time:

m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: v < 2;

2: fori=1-mndo
3: ¥ —1r?

4: return 7

> running time:
» uniform model: n steps

‘m 4 Modelling Issues
©Harald Racke

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

17 < 2;

2. fori=1-ndo
3: v — 712

4: return 7

> running time:

» uniform model: n steps
» logarithmic model: 1 +2 +4 + .- . + 2" = 21+l

-1=0(02")

m ©Harald Racke

4 Modelling Issues

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

17 < 2;

2. fori=1-ndo
3: v — 712

4: return 7

> running time:

» uniform model: n steps
» logarithmic model: 1 +2 +4 + - - - 4+ 2" = 2n+l

> space

requirement:

-1=0(02")

m ©Harald Racke

4 Modelling Issues

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: v < 2;

2. fori=1-ndo
3: v — 712

4: return v

> running time:

» uniform model: n steps
» logarithmic model: 1 +2 +4 + - - - 4+ 2" = 2n+l

> space

requirement:

» uniform model: O(1)

-1=06(2")

m ©Harald Racke

4 Modelling Issues

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: v < 2;

2. fori=1-ndo
3: ¥ —1r?

4: return 7

> running time:

» uniform model: n steps

» logarithmic model: 1 +2 +4 + .- - +2n =21 _ 1 = @(2")
> space requirement:
» uniform model: O(1)
» logarithmic model: O (2™")
4 Modelling Issues =) = =

m ©Harald Racke

There are different types of complexity bounds:
» best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.

IM\ 4 Modelling Issues
©Harald Racke

There are different types of complexity bounds:
» best-case complexity:

Coc(n) := min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
» worst-case complexity:

Cwe(n) == max{C(x) | x| = n}

Usually moderately easy to analyze; sometimes too
pessimistic.

‘m 4 Modelling Issues
©Harald Racke

There are different types of complexity bounds:
» best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
» worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
» average case complexity:

Cavg(n) 1= — z C(x)

Ix\ n

‘m 4 Modelling Issues
©Harald Racke

There are different types of complexity bounds:
» best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
» worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
» average case complexity:

Cavg(n) 1= — z C(x)

Ix\ n

more general: probability measure u
Cavg(n) == > p(x) - C(x)

xely

‘m 4 Modelling Issues
©Harald Racke

There are different types of complexity bounds:

» amortized complexity:
The average cost of data structure operations over a worst
case sequence of operations.

‘m 4 Modelling Issues = =
©Harald Racke

There are different types of complexity bounds:

» amortized complexity:
The average cost of data structure operations over a worst
case sequence of operations.

» randomized complexity:
The algorithm may use random bits. Expected running time
(over all possible choices of random bits) for a fixed input
x. Then take the worst-case over all x with |x| = n.

‘m 4 Modelling Issues = =
©Harald Racke

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

‘m 5 Asymptotic Notation = =
©Harald Racke

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

» We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

‘m 5 Asymptotic Notation = =
©Harald Racke

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

» We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

‘m 5 Asymptotic Notation = =
©Harald Racke

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

» We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

» A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster
machine.

m 5 Asymptotic Notation
©Harald Racke

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

» We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

» A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

» O(f) ={gl3dc>03InpeNgVn=ng: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

‘m 5 Asymptotic Notation =] =
©Harald Racke

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.
» O(f) ={gl3dc>03InpeNgVn=ng: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

» Q(f) ={gl13c>0InpeNgVn=np: [gln) =c- f(n)]}
(set of functions that asymptotically grow not slower than f)

‘m 5 Asymptotic Notation = =
©Harald Racke

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.
» O(f) ={g|3dc>0TInpeNgVn=ng: [gn) <c-fn)l}
(set of functions that asymptotically grow not faster than f)
» Q(f) ={gl3dc>03InpeNgVn=ng: [gin) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

» O(f) =Q(f) NnO(f)
(functions that asymptotically have the same growth as f)

‘m 5 Asymptotic Notation = =
©Harald Racke

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

» O(f) ={g|3dc>0TInpeNgVn=ng: [gn) <c-fn)l}
(set of functions that asymptotically grow not faster than f)

» Q(f) ={gl3dc>03InpeNgVn=ng: [gin) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

» 0(f) =Q(f) NnO(f)
(functions that asymptotically have the same growth as f)

» o(f) ={g|Vc>0dnpeNgVn=ng: [gn) <c- f(n)l}
(set of functions that asymptotically grow slower than f)

‘m 5 Asymptotic Notation = =
©Harald Racke

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

>

O(f) ={g|3Ic>0InpeNgVn=np: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)
Qf) ={gl3Ic>0InpeNgVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)
o(f) =Q(f) nO(f)

(functions that asymptotically have the same growth as f)
o(f) ={gIVe>03aInpeNygVn=np: [gn) <c-f(n)l}
(set of functions that asymptotically grow slower than f)
w(f)=1{g1Ve>03IngeNgVn=ng: [gn)=c- f(n)]}
(set of functions that asymptotically grow faster than f)

‘m 5 Asymptotic Notation = =
©Harald Racke

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N
to Ry .

> geof): 05%19010??;;

<

m 5 Asymptotic Notation =] =
©Harald Racke

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N
to Ry .

» g€ O(f): 0< lim g

Nn— o0

<

(n)
» g e Q(f): O<%%?EZ; < o

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N

to Ry .
N _ . gn) o
g e o) 05%19010 (n)<
» g e Q(f): O<%§1}o?§z;sw
. : IO
g € 0(f): 0<1}L111010f(n)<

‘m 5 Asymptotic Notation =] =
©Harald Racke

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N

to Ry .

N _ . gn) o
g e o) 05%19010 (n)<

» g e Q(f): O<%§1}o?§z;sw

. : IO
g € 0(f): O<1}L111010f(n) <

N oo gn)
geo(f): %%fi(n) =0

‘m 5 Asymptotic Notation =] =
©Harald Racke

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N

to Ry .
> geof): 05%@092’;;<w
> geQ(f): 0<%%?EZ;SOO
> geof): 0<1;Lgro10§1$;<oo
> geo(f): Jim T ~0
> g€ wf): ”IL%?EZ;:OO

‘m 5 Asymptotic Notation =] =
©Harald Racke

Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation

Abuse of notation
1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).
2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N >R, n~ f(n),and g:N - R* n~ gn).

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N >R, n~ f(n),and g:N - R* n~ gn).

3. People write e.g. h(n) = f(n) + 0(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € 0(g)
such that h(n) = f(n) + z(n).

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation

Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N >R, n~ f(n),and g:N - R* n~ gn).

3. People write e.g. h(n) = f(n) + 0(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € 0(g)
such that h(n) = f(n) + z(n).

4. People write O(f(n)) = O(g(n)), when they mean
O(f(n)) € O(g(n)). Again this is not an equality.

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)

Here, ©(n) stands for an anonymous function in the set ®(n)
that makes the expression true.

m 5 Asymptotic Notation =]
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

2n° +3n+1=2n°+0mn)
Here, ©(n) stands for an anonymous function in the set ®(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.

‘m 5 Asymptotic Notation = =
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

2n% + O(n) = O(n?)

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:
2n® +0(n) = 0(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € ©(n?)
that makes the expression true.

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

n
> 03) =0(n?)
i=1

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

Careful!

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

Careful!

“It is understood” that every occurence of an @-symbol (or

0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O(l)+0R2)+---+0(n-1)+0B(n)

‘m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as
generating a set:
n’-0(n) + O(logn)

represents

{fiN=R" | f(n) =n?-g(n) +h(n)
with g(n) € O(n) and h(n) € (‘)(logn)}

‘m 5 Asymptotic Notation =]
©Harald Racke

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as
containement btw. two sets:

n’-0m) +0logn) = O(n?)

represents

n?-0m) +0logn) < O(n?)

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

» ¢ f(n) € O(f(n)) for any constant c

'Ml 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Lemma 3

Let f,g be functions with the property

dng > 0Vn = ng: f(n) > 0 (the same for g). Then
» ¢ f(n) € O(f(n)) for any constant c

» O(f(n) +0(g(n)) = O0(f(n) + gn))

'Ml 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

» ¢ f(n) € O(f(n)) for any constant c
» O(f(n)) +O0(g(n)) = O(f(n) +g(n))
» O(f(n)) - O0(g(n)) =0(f(n) - gn))

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

» ¢ f(n) € O(f(n)) for any constant c

» O(f(n)) +O0(g(n)) = O(f(n) +g(n))

» O(f(n)) - O0(g(n)) =0(f(n) - gn))

» O(f(n)) + O(g(n)) = O(max{f(n),gn)})

m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

» ¢ f(n) € O(f(n)) for any constant c

» O(f(n) +0(g(n)) = O0(f(n) + g(n))

» O(f(n) - 0(g(n)) =0(f(n) - gn))

» O(f(n)) + 0(g(n)) = O(max{f(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)}).

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

m 5 Asymptotic Notation =]
©Harald Racke

Asymptotic Notation

Comments
» Do not use asymptotic notation within induction proofs.
» For any constants a, b we have log, n = 0(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

‘m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

» For any constants a, b we have log, n = 0(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

> In general logn = log, n, i.e., we use 2 as the default base
for the logarithm.

‘m 5 Asymptotic Notation =
©Harald Racke

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.

‘m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:

‘m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).

‘m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log® n.

,
&

‘m 5 Asymptotic Notation
©Harald Racke

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log® n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.

‘m 5 Asymptotic Notation =
©Harald Racke

6 Recurrences

Algorlthm 2 mergesort(list L)

: n — size(L)
cifn<1returnlL

: Ly = L[1---1%]]

: Ly < L[L J + 1 -n]
: mergesort(Ll)

: mergesort(Ly)

: L — merge(L1,Lp)

: return L

OO\IO\U'I-bUJN—'

m ©Harald Racke

6 Recurrences

6 Recurrences

Algorithm 2 mergesort(listL)

1: n — size(L)

2: ifm<1returnL

3: Ly — L[1---|5]]

4: Ly <—L[L%J+1---n]
5:
6
7
8

mergesort(Ly)

: mergesort(Ly)
: L — merge(L1,Lp)
: return L

This algorithm requires

T(n) =T(|

T (|2 +om = 27|

n
2

) +om

comparisons when n > 1 and 0 comparisons when n < 1.

m ©Harald Racke

6 Recurrences

Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

m 6 Recurrences = =
©Harald Racke

Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

For this we need to solve the recurrence.

‘m 6 Recurrences = =
©Harald Racke

Methods for Solving Recurrences

1. Guessing+Induction
Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem
For a lot of recurrences that appear in the analysis of
algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial
Linear homogenous recurrences can be solved via this
method.

‘m 6 Recurrences =]
©Harald Racke

Methods for Solving Recurrences

4. Generating Functions
A more general technique that allows to solve certain types
of linear inhomogenous relations and also sometimes
non-linear recurrence relations.

5. Transformation of the Recurrence
Sometimes one can transform the given recurrence relations
so that it e.g. becomes linear and can therefore be solved
with one of the other techniques.

‘m 6 Recurrences =] =
©Harald Racke

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(5) +cn n=2
0 otherwise

T(n) < {

‘m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Assume that instead we had

2T(%) +cn n=2
0 otherwise

T(n) < {

One way of solving such a recurrence is to guess a solution, and
check that it is correct by plugging it in.

m 6.1 Guessing+Iinduction =] =
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d.

m 6.1 Guessing+Induction
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§> +cn

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(%> +cn

< Z(dglogg) +cn

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then
n
T(n) < 2T(§> +cn
n n
< Z(dilog E) +cn

=dn(logn—-1)+cn

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T(§> +cn
< Z(dglogg) +cn

=dn(logn—-1)+cn
=dnlogn+ (c—dn

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T(§> +cn
n n
< 2<d§10g§) +cn
=dn(logn—-1)+cn

=dnlogn+ (c—dn

<dnlogn

if we choose d > c.

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T<§> +cn
n n
< 2<d§10g§) +cn
=dn(logn—-1)+cn

=dnlogn+ (c—dn

<dnlogn
if we choose d > c.

Formally one would make an induction proof, where the above is
the induction step. The base case is usually trivial.

m 6.1 Guessing+Induction =] =
©Harald Racke

6.1 Guessing+Induction

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16):

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction T(n) S{ iT(?) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.

6.1 Guessing+Induction T(n) S{ iT(’S) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.
> induction step2...n -1 - n:

6.1 Guessing+Induction T(n)

<
b otw.

{2T(’§)+cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.
> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

6.1 Guessing+Induction T(n)

<
b otw.

{2T(’§)+cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.
> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < ZT(%) +cn

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n)

|

2T(5) +cn n =16
b otw.

» base case (2 <n < 16): true if we choose d > b.

> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.

We prove it for n:

T(n) < ZT(%) +cn

< Z(dglogg> +cn

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n)

|

2T(5) +cn n =16
b otw.

» base case (2 <n < 16): true if we choose d > b.

> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.

We prove it for n:

T(n) < ZT(%) +cn

< Z(dglogg> +cn

=dn(logn—-1) +cn

6.1 Guessing+Induction T(n)

<
b otw.

{2T(’§)+cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.
> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < ZT(%) +cn
< Z(dglogg> +cn

=dn(logn—-1) +cn

=dnlogn + (c —d)n

6.1 Guessing+Induction T(n) S{ zT(’S) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.

> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(§) +cn
n n
< 2(d§10g5> +cn
=dn(logn—-1) +cn

=dnlogn + (c —d)n
<dnlogn

6.1 Guessing+Induction T(n) S{ iT(’S) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

» base case (2 <n < 16): true if we choose d > b.

> induction step2...n -1 - n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(§) +cn
n n
< 2(d§10g5> +cn
=dn(logn—-1) +cn

=dnlogn + (c —d)n
<dnlogn

Hence, statement is true if we choose d > c.

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

m 6.1 Guessing+Induction =] =
©Harald Racke

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([5]) +cn n =16
b otherwise

T(n) < {

m 6.1 Guessing+Induction = =
©Harald Racke

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following
recurrence:

2T([5]) +cn n =16
T(n) < (2D _
b otherwise
Note that we can do this as for constant-sized inputs the running
time is always some constant (b in the above case).

‘m 6.1 Guessing+Induction =
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n)

m 6.1 Guessing+Induction
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

m 6.1 Guessing+Induction
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [g]) +cn

m 6.1 Guessing+Induction
©Harald Racke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [g]) +cn

m 6.1 Guessing+Induction
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

IS

< Z(d[%] log [g]) +cn

<2(dn/2+1)log(n/2+1))+cn

m ©Harald Racke

6.1 Guessing+Induction

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
T(n) < ZT([gD +cn
n n
< Z(d[g] log [f]) +cn
<2(dn/2+1)log(n/2+1))+cn

—_
SE
—
IA
SE

b
—_

N3
+
s
IA

Sl
N

6.1 Guessing+Induction

m ©Harald Racke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

[3]<3+1| <2(d(n/2+1)log(n/2+1)) +cn
n <39 9
7+l in| <dnlog (En) +2dlogn +cn

6.1 Guessing+Induction

m ©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

<2(dn/2+1)log(n/2+1))+cn

—

n n
[3]<%+

+1=fn| <dnlog (%n) +2dlogn +cn

n
2

log %n =logn + (log9 — 4) ’

'Ml 6.1 Guessing+Induction
©Harald Racke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [g]) +cn

[3]<3+1| <2(d(n/2+1)log(n/2+1)) +cn

n <39 9

7+1l<qn sdnlog(ﬁn)JerlognJrcn
log%n=logn+(log9—4)’ =dnlogn + (log9 —4)dn + 2dlogn + cn

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

<2(dn/2+1)log(n/2+1))+cn

—

n n
[?—IS?-F

+1=fn| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ’ =dnlogn + (log9 —4)dn + 2dlogn + cn

n
2

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

<2(dn/2+1)log(n/2+1))+cn

—

n n
[3]<%+

+1=fn| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ’ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn

n
2

m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

<2(dn/2+1)log(n/2+1))+cn

—

n n
[3]<%+

+1=fn| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ’ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn
<dnlogn —0.33dn +cn

n
2

‘m 6.1 Guessing+Induction =]
©Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

<2(dn/2+1)log(n/2+1))+cn

—

n n
[3]<5+

+1=gn| <dnlog (%n) +2dlogn +cn

n
2

log {5n = logn + (log9 — 4) ’ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn
<dnlogn —0.33dn +cn

<dnlogn

for a suitable choice of d.

‘m 6.1 Guessing+Induction =]
©Harald Racke

6.2 Master Theorem

Lemma 4
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence n

T(n) = aT(E) + fn) .

Case 1.
If f(n) = O(n'°%@-€) then T(n) = O(nlosra),

Case 2.
If f(n) = ©(nl°8 (@ logk n) then T(n) = O(n'°8 2 1og"*! n),
k>0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n

af(%) < cf(n) for some constantc <1 thenT(n) = O(f(n)).

‘m 6.2 Master Theorem =]
©Harald Racke

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m 6.2 Master Theorem =] =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

m 6.2 Master Theorem =) =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

®

m 6.2 Master Theorem =) =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =) =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =]
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

=
g

@
1

‘m 6.2 Master Theorem
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

@
1

‘m 6.2 Master Theorem
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
©Harald Racke

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem =] =
©Harald Racke

6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a#(%) :

i=0

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

T(n) - nlogb a

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

T -l =3 aif (%)

i=0

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

T -l =3 aif (%)

i=0
log, n—1

¢ 3 ai

i=0

IA

n

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

T -l =3 aif (%)

i=0
log, n—1

¢ 3 ai

i=0

IA

p-ilogpa—e) — bei(blogh u)—i = peig—i |

n

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) — nlosra = Z alf<ﬁ>
i=0

logy n-1 logy, a—e

<C a bi

i=0

log, n—1]
p-illogy a—e) _ pei(plogpay—i — beia—il = cnlogpa—c Z (b€)?

i=0

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = Z alf<ﬁ>
i=0
log, n—1 logy, a—e¢
- Z i 2 Sb
<C a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0

k+1,1
Zl Oq q-1

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T -l =3 aif (%)
i=0
log, n—1 logy, a—e¢
- z i(n b
<cC a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0
gkl | log, a—e belogbn -1 hE — 1
Stoai=tt|=cn (/()

m 6.2 Master Theorem =] =
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = Z alf<ﬁ>

i=0

log, n—1 logy, a—e¢
- Z i 2 Sb
<C a bi

i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l

i=0
Zl oq ’:1;1 _ Cnlogba—E(belogbn . 1)/(be -1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)

m 6.2 Master Theorem =] =
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

T(n) —

p-ilogya-e) — bei(blogh u)—i = peig-i | — Cnlogbu

Zl Oq

m ©Harald Racke

logp n—1
nloga - % aif<%>
i=0
log, n—1 log, a—€
s 3y ()
i=0
log, n—-1)
—e Z (be)l
i=0
1:11,1 _ Cnlogba—E(bEI(’gb" -1)/(b -1)
— OB A€ (n€ _ 1)/ (b — 1)
C logy, a (.,€ €
= ——n%%n" -1)/(n
e ()/ (n®)
6.2 Master Theorem “ B

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T -l =3 aif (%)
i=0
log, n-1 1 —
. Z i(n 0gp a—€
<cC a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0
Zl 0‘1 1:11,1 _ Cnlogb a—E(belogbn . 1)/(be _
= cnlo®a=€(n€ —1)/(b° - 1)
¢ logy, a(.,€ €
=—n"®*nc-1)/(n
e ()/ (n€)
Hence,
C
T(n) < < + 1>nl°gb(“)
() = (5
& =

m 6.2 Master Theorem
©Harald Racke

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = Z alf<ﬁ>
i=0
log, n—1 logy, a—e¢
- Z ; 2 Sb
<C a bi
i=0
log, n—1]
p-ilogpa—e) — bei(blogh u)—i = peig—i | — Cnlogb a—e Z (be)l
i=0

Sk gqi = BL | — cplogs a-e(pelogn _ 1)/ (pe — 1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n)

Hence,

T(n) < <

peg) > T(n) = 08 9).

m 6.2 Master Theorem =] =
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

T(n) - nlogh a

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
_ logya _ i had
T(n)—no°srd = Z af(bi)
i=0
log, n—1

log, a
i(n
E. i
c a <bi>
i=0

IA

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i ﬁ

T(n) - n% = 3, f(bl)
i=0

log, n—1 log, a

<cC a bi
i=0

log, n—1

=cnlogra X

i=0

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i ﬁ

T(n) - n% = 3, f(bl)
i=0

log, n—1 log, a

<cC a bi
i=0

log, n—1

=cnlogra X

i=0
cnlog log, n

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i 2
T(n) - n% = 3, f(bl)
i=0
log, n—1 log, a
12 gp
<c > a =
i=0
log, n—-1
=cnlogra X
i=0

cnlog log, n

Hence,
T(n) = O(n'°% *log, n)

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

_ logya _ i 2

T —mloee® = 2. f(bl)
i=0

log, n—1 logs a

<c a i
i=0

log, n—1

=cnlogra X

i=0
cn'o8 4 log, n

Hence,

T(n) = O(n'°&%log,n) |= T(n) = O 2logn).

m 6.2 Master Theorem =] = =
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

T(n) — nlogb a

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1

log, a
i(n
2 i
=C a (bi)
i=0

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
logp n—1 log, a
lﬁ Sh
2c > a i
i=0
log, n—-1
=cnlo®a X
i=0

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
logp n—1 log, a
lﬁ Zb
2c > a i
i=0
log, n—-1
=cnlo®a X
i=0
= cnl°® %log, n

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T(n) —nlogra = Z alf<ﬁ)
i=0
logp n—1 log, a
i E Sh
>c > a i
i=0
log, n—1
=cnlo®a X
i=0
= cnl°® %log, n

Hence,
T(n) = Q(n'°% %log, n)

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) = cnlog» 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
logp n—1 log, a
i n Zb
>c > a i
i=0
log, n—1
:Cnlogba Z 1
i=0
= cnl%8 3log, n

Hence,

T(n) = Q% %log,n) |= T(n) = Qn'°%2logn).

m 6.2 Master Theorem =] = =
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) — nlosra

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) - nloma= Y aif(%)

i=0

m 6.2 Master Theorem
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) - nloma= Y aif(%)

=<cC

i=0
log, n—-1

2.

i=0

k

(n log, a n k
a(5r) - (10w (51))

m ©Harald Racke

6.2 Master Theorem

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.
logp n—1 n
o) —nlowd =3 aif (1)
i=0
log, n—-1

S) o (1)

i=0

n:h€=>€:logbn|

m 6.2 Master Theorem =
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) - nloma= Y aif(%)

=<cC

i=0
log, n—1

2.

i=0

a

1

[

=

k

)" o (35))

- piN\ K
n:h€=>€:logbn| = cnlosr @ Z (logb())

m ©Harald Racke

6.2 Master Theorem

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

k

logp n—1 n
o) —nlowd =3 aif (1)
i=0
log, n—1 logy, a k
() (o (53))
<c g(:) a(bi 0gp | 37
£-1

b# k
n:h€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

-1
= cnlo8ra 3 (¢ - i)k
i=0

m 6.2 Master Theorem =
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) -nloma - aif(”)

i=0 bt
log, n—1 logy, a k
‘n n
o 2 @) (om (57))
i=0
£-1

b# k
n:h€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

£-1
= cnlo8ra 3 (¢ - i)k
i=0
4
_ Cnlogb a Z ik
i=1

m 6.2 Master Theorem =
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) — nlogra =

n:b€=>€:logbn|

logp n—1

> alf(y
bi

i=0

log, n—1

S) o (1)

i=0

-1 bl k
()

i=0

£-1
= cnlo8ra 3 (¢ - i)k
i=0

'3
= cnlOgb ‘lz ik ~ %#kﬂ
i=1

m ©Harald Racke

6.2 Master Theorem &

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
o) —nlowd =3 aif (1)
i=0
log, n—1 logy, a k
() (o (53))
<c g(:) a(bi 0gp | 37
£-1

b# k
n:h€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

£-1
= cnlo8ra 3 (¢ - i)k
i=0
4
_ cnlogb a Z ik
i=1
~ %nlogh a€k+1

m 6.2 Master Theorem =
©Harald Racke

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
T(n) -nlogra = % alf(ﬁ)
i=0
log, n—1 logy, a k
() (o (53))
<c g(:) a(bi 0gp | 37
£-1

b# k
n:b€=>€:logbn| = cnlogra Z (logb (ﬁ))
i=0

£-1

= cnlo8ra 3 (¢ - i)k
i=0
4

_ cnlogb a Z ik

i=1
%nlogb apk+1 = T(n) = O(nloghulogkﬂ n).

u

m 6.2 Master Theorem =] =
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

m 6.2 Master Theorem
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

‘m 6.2 Master Theorem =
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

Ton) -l =3 aif ()

i=0

‘m 6.2 Master Theorem =]
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n) — nlogha _ Z aif ﬂl
> af(5)
log, n—-1
< > cifm) +0omosne)
i=0

‘m 6.2 Master Theorem =]
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
_ plogya _ ig(N
T(n) —n°ra = Z af(bi>
i=0
log, n—-1
< > cifm) +0omosne)
i=0
7’ _gn+l
q<1:zl?'=0qlzllq_q sﬁ

‘m 6.2 Master Theorem =
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n)-nlosva = 3 a‘f(%)
i=0
log, n—-1
< > cifm) +0omosne)
i=0
a<1:3fa = 55 s g | <7 i Sfn) + ome

‘m 6.2 Master Theorem =
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
T(n) —nlogra = Z a‘f<ﬁ>
i=0
log, n—-1
< > cifm) +0omosne)
i=0
P 1
a<1:3foqi= 190" < 1| < oS+ O(nlosr4)
Hence,

T(n) <0(f(n))

‘m 6.2 Master Theorem =
©Harald Racke

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1
ron - nowe =S aif (R
3 ar(y)
log, n—-1
< > cifm) +0omosne)
i=0
a<1:3hoqi=500 <L) < 1 i cf(n) + O (nlosra)
Hence,
T(n) <0(f(n) > T(n) = ®(f(n))_‘

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
10001001|1 B

L

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11T01 10101 A
1000100 1|1 B

o

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

1

o

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101[0]1 A
1000100(1/1 B
0/0

Cl

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

o000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
10001[0011 B
1000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101{1jo101 A
1000(1/0011 B

' J1000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{1{101 01 A
1000(1/00 11 B

01000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
jo1000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11010101 A
100010011 B
001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
Joo1000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
1001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
1100010011 B
/1001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

iMlo110101 A
11000010011 B
11001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
/11001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1,000 10011 B
011001000

1

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
' Jo11001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001 0011 B
1011001000

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,9000100 11 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001Xx101(1

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 x101(1
10001

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
0

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
100010

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

00

m 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 XxX1(011
10001
100010
00000O0O

m 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
00O

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 xA011
10001
100010
00000O0O
1T0001000O0

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
1T0001000O0

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
1T0001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B x| A

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b bo‘x‘an ao

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn b% b%_l bo‘x‘an a% a%_l ao

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X \ A; Ao

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B1 Bo \ X | A; Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

Hence,

A-B=A1By-2"+ (A;Bo + AoBy) - 27 + Ag - By

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then

2 return ag - bg

3: split A into Ag and A,

4: split B into By and B;

5: Zo — mult(Ay,B;)

6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)

8: return Z - 2" + 7, - 27 4 Zo

o(1)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

o(1)
O(1)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bg

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

o(1)
O(1)
On)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

m ©Harald Racke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(Ay,B;)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z» - 2" + 7Z; - 27 VA
6.2 Master Theorem =) =

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

m ©Harald Racke

1. if |A| = |B] =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(Ay,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)
7: Zy — mult(Ag, Bg)
8: return Z» - 2" + 7Z; - 27 VA
6.2 Master Theorem =) =

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg)

8: return Z» - 2" + 7Z; - 27 VA

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1. if |A| = |B] =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8: return Z» - 2" + 7Z; - 27 VA

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |JA| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(A1, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zy — mult(Ag, Bg) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:

T(n) = 4T<%) +OMm) .

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

We get a running time of ©@(n?) for our algorithm.

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(n°%r2loghn) T(n) = O(nlograloght! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

We get a running time of ©@(n?) for our algorithm.

=> Not better then the “school method”.

‘m 6.2 Master Theorem =
©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

m 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy

m 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy
= (Ao + A1) - (Bo + B1) — A1B1 — AoBo

'Ml 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

'Ml 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =7 =1Z

—t
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

m 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo
8: return Zp - 2" + Z; - 2% & Zo

o)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo
8: return Zp - 2" + Z; - 2% & Zo

o)
O(1)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo
8: return Zp - 2" + Z; - 2% & Zo

o)
O(1)
O(n)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bq)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo

8: return Zp - 2" + Z; - 2% & Zo

6.2 Master Theorem & =

m ©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,By+B1) — Z>— Zo

8: return Zp - 2" + Z; - 2% & Zo

6.2 Master Theorem & =

m ©Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 = A1Bg + AgBy =72 =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

m ©Harald Racke

1: if |A] = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zo — mult(A1, By) T(%)
6: Zo — mult(Ag, By) T(%)
7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z

8: return Zp - 2" + Z; - 2% & Zo

6.2 Master Theorem =) =

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)
T(%) +0(n)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1

= A1Bg + AoB1 =7y =12

—t— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq, By)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

O(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)

m ©Harald Racke

6.2 Master Theorem

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +0Mm) .

m 6.2 Master Theorem
©Harald Racke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T(%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(nl%%ralogn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nloBate) T(n) =0(f(n)

‘m 6.2 Master Theorem =) =
©Harald Racke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(nl%%ralogn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nloBate) T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(1’11‘59).

‘m 6.2 Master Theorem =] =
©Harald Racke

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
» Case 1: f(n) = O(nlo8ra—¢) T(n) = O(nlogr a)
» Case 2: f(n) = O(nl%%ralogn) T(n) = O(nlogralogh+! n)
> Case 3: f(n) = Q(nloBate) T(n) = 0(f(n))

Again we are in Case 1. We get a running time of
@(nlog2 3) ~ @(1’11‘59).

A huge improvement over the “school method”.

‘m 6.2 Master Theorem =] =
©Harald Racke

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coTm)+ciTm—1)+c2Tm—2)+---+cxT(n—k) = f(n)

m 6.3 The Characteristic Polynomial = =
©Harald Racke

6.3 The Characteristic Polynomial
Consider the recurrence relation:
coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (co, cx # 0).

‘m 6.3 The Characteristic Polynomial = =
©Harald Racke

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (co, cx # 0).
» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

m 6.3 The Characteristic Polynomial
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

m 6.3 The Characteristic Polynomial = =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

Approach:

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1], T[2], T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:

> First determine all solutions that satisfy recurrence relation.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1], T[2], T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

6.3 The Characteristic Polynomial

Observations:

» The solution T[1], T[2], T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

» k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
» First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
» First consider the homogenous case.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence reIation}

is a vector space.

m 6.3 The Characteristic Polynomial = =
©Harald Racke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

m 6.3 The Characteristic Polynomial = =
©Harald Racke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

COA”"‘CIATL_I +Cp - ATL—Z + e+ A?’L—k =0

for all n > k.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAX + ARty AR2 4 L =0

m 6.3 The Characteristic Polynomial = =
©Harald Racke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

characteristic polynomial P[A]

m 6.3 The Characteristic Polynomial = =
©Harald Racke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = 2\?
is a solution to the recurrence relation.

‘m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A’i‘
is a solution to the recurrence relation.

Let Aq,..., A be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
0(17\1 + 0(27\2 + -+ (XkAk

is a solution for arbitrary values «;.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of

the form
1A+ AT + -+ gAY

‘m 6.3 The Characteristic Polynomial =
©Harald Racke

The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

1A+ AT + -+ gAY

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],...,T[k].

m 6.3 The Characteristic Polynomial =]
©Harald Racke

The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

1A+ AT + -+ gAY

Proof.
There is one solution for every possible choice of boundary

conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution
for every choice of boundary conditions.

m 6.3 The Characteristic Polynomial =]
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

‘m 6.3 The Characteristic Polynomial = =
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

0(1-7\1 + 0(2-)\2 + -+ O(k-Ak = T[l]

‘m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

®1-A1 + o2-A2 4+ -+ oAy = TI[1]
oA+ AR+ e+ oA = T([2]

‘m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

®1-A1 + o2-A2 4+ -+ oAy = TI[1]
oA+ AR+ e+ oA = T([2]

‘m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:

®1-A1 + o2-A2 4+ -+ oAy = TI[1]
oA+ AR+ e+ oA = T([2]
o AN 4+ - AS o+ o+ AR = TR

‘m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the (x;s such that these conditions are met:

Al A2 - A o1 T[1]
AT A3 - A2 o | | TI2]
Ak Ak AK o T[k]

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the (x;s such that these conditions are met:

Al A2 - A o1 T[1]
AT A3 - A2 o | | TI2]
Ak Ak AK o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

Computing the Determinant

A%)\g s Aol Ak
2

)\1)\2 Ak*l)\i _

NOA Al

m 6.3 The Characteristic Polynomial
©Harald Racke

Computing the Determinant

A
AT A
Af A

Ak 1 1
A7k AL A
S =TTA .)
k = ; k
Ak AL Akl

Ak-1

k-1
Akfl

m ©Harald Racke

6.3 The Characteristic Polynomial

Computing the Determinant

A1 Ar oo Arl1 Ak 1 1
AT OA3 .- AT, ARk AL A
=TT .
k k k :k = k k
AK A Ak Ak AL Akl
1 A
k 1 A
=[])
i=1 :
1 Ax

6.3 The Characteristic Polynomial

m ©Harald Racke

Computing the Determinant

1Ay --- A2 Akt
1 Ay --- AkZ2 Akt
R .

m 6.3 The Characteristic Polynomial
©Harald Racke

Computing the Determinant

1 A Ak=2 Akt
1 A A=z Akt
1 Ak A2 Akt
1 Ap—-Ap-1 - A’f‘z—Al-/\ﬁ"‘% Alf_l—Al-Alf_z
I Ao—=Ap-1 --- AK2oap a7 Akt oAy a2
IoAg=Ap-1 - A2 aklboag Ak
6.3 The Characteristic Polynomial =) = E

m ©Harald Racke

Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2
T Ap—Ap-1 - A572A0 A58 Aft oA ak2
Lo Ag=Ap-1 -0 A2 AR AKTL iy k2

6.3 The Characteristic Polynomial

m ©Harald Racke

Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2

I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2

Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
1 0 0 0
1 (A=A)-1 -+ (A2=A)-A53 (A —2Ay)-A52
1 A=AD-1 -+ A=A - A% (A —2Ap) - Af?

‘m 6.3 The Characteristic Polynomial =
©Harald Racke

Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?

m 6.3 The Characteristic Polynomial =
©Harald Racke

Computing the Determinant

1 0 0 0
I A=A 1 -+ A2—=Ap)-A53 (Ax—ap)-ak2
I A=A -1 - (A=A -AF7 (A —2Ap)-ak?

L I Ao - A3 Ak
[T@Ai=2y) - : :
=2 1 A --- AR Ak2

m 6.3 The Characteristic Polynomial =
©Harald Racke

Computing the Determinant

Repeating the above steps gives:

A Az e Apor Ag

N Al Ak

) i S=TTAa[T@ai=ap
.k .k k. .k i=1 i>l

AT A e A A

Hence, if all A;’s are different, then the determinant is hon-zero.

‘m 6.3 The Characteristic Polynomial = =
©Harald Racke

The Homogeneous Case

What happens if the roots are not all distinct?

m 6.3 The Characteristic Polynomial
©Harald Racke

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nA’".

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nA’".

To see this consider the polynomial

PIAT - A" K = coA™ + A" L4 oA 2 4 oo Ak

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A}" a solution to the recurrence but also nA’.

To see this consider the polynomial

PIAT - A" K = coA™ + A" L4 oA 2 4 oo Ak

Since A; is a root we can write this as Q[A] - (A — A;)2.
Calculating the derivative gives a polynomial that still has root
Aj.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

This means

COnA?_l +c1(n— l))\lﬂ_2 + it op(n— k)/\"l(l—k—l -0

m 6.3 The Characteristic Polynomial =
©Harald Racke

This means

Conz\?_l +c1(n— l))\ln_2 + it op(n— k)/\"l(l—k—l -0

Hence,

conAl + c1(n - 1))\17.1_1 + - tog(n— k)A;:’l—k -0

m 6.3 The Characteristic Polynomial =
©Harald Racke

This means

Conz\?_l +c1(n— 1))\?‘2 + it op(n— k)/\"l(l—k—l -0

Hence,

conAl + c1(n - 1))\17.1_1 + - tog(n— k)A;:’l—k -0
— —_— —
T[n] T[n-1] TIn-k]

m 6.3 The Characteristic Polynomial =
©Harald Racke

The Homogeneous Case

Suppose A; has multiplicity j.

m 6.3 The Characteristic Polynomial
©Harald Racke

The Homogeneous Case

Suppose A; has multiplicity j. We know that
C()TL)\{L +c1(n— I)A?_l + ot op(n— k)A;’Lfk -0

(after taking the derivative; multiplying with A; plugging in A;)

‘m 6.3 The Characteristic Polynomial =
©Harald Racke

The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

m 6.3 The Characteristic Polynomial =]
©Harald Racke

The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

We can continue j — 1 times.

m 6.3 The Characteristic Polynomial =]
©Harald Racke

The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

We can continue j — 1 times.

Hence, ne)\? is a solution for £ €0,...,j — 1.

m 6.3 The Characteristic Polynomial =]
©Harald Racke

The Homogeneous Case

Lemma 6
Let P[A] denote the characteristic polynomial to the recurrence

coTn]l+caiTn—11+---+c,T[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities £;. Then the general solution to the recurrence is

given by
{i-1

m
T[n]l= > ®ij - (AT .
i=1 j=0

The full proof is omitted. We have only shown that any choice of
«;j’s is a solution to the recurrence.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tnl=Tn-11+Tn-2]forn=2

m 6.3 The Characteristic Polynomial
©Harald Racke

Example: Fibonacci Sequence

T[0]=0
T[1]=1
TInl=Tn-1]1+T[n-2]forn =2

The characteristic polynomial is

AZ-A-1

m 6.3 The Characteristic Polynomial
©Harald Racke

Example: Fibonacci Sequence

T[0]=0
T[1]=1
TInl=Tn-1]1+T[n-2]forn =2

The characteristic polynomial is
A2-A-1

Finding the roots, gives

m 6.3 The Characteristic Polynomial
©Harald Racke

Example: Fibonacci Sequence

Hence, the solution is of the form

(5 a5

2 2

.

6.3 The Characteristic Polynomial

m ©Harald Racke

Example: Fibonacci Sequence

Hence, the solution is of the form

(5 a5

2 2

T[0] =0 gives x+ = 0.

.

6.3 The Characteristic Polynomial

m ©Harald Racke

Example: Fibonacci Sequence
Hence, the solution is of the form

(155 (1

T[0] =0 gives x+ = 0.

T[1] =1 gives

CONCOR

.

6.3 The Characteristic Polynomial

m ©Harald Racke

Example: Fibonacci Sequence
Hence, the solution is of the form

(7)o ()

T[0] =0 gives x+ = 0.

T[1] =1 gives

o(155) s (155) 212w

il

6.3 The Characteristic Polynomial

m ©Harald Racke

Example: Fibonacci Sequence

Hence, the solution is

1(1+ﬁ" 1-45
V5 2 S\ 2

)]

6.3 The Characteristic Polynomial

m ©Harald Racke

The Inhomogeneous Case

Consider the recurrence relation:
coT(n)+aTn—1)+c2TM—-2)+---+cxT(n—k)=f(n)
with f(n) + 0.

While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Ty(n) ,

where T}, is any solution to the homogeneous equation, and T),
is one particular solution to the inhomogeneous equation.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Ty(n) ,

where T}, is any solution to the homogeneous equation, and T),
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

m 6.3 The Characteristic Polynomial =] =
©Harald Racke

The Inhomogeneous Case

Example:
Tn]l=Tn-1]1+1 T[0]=1

‘m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example:

Tnl=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1

(n=2)

6.3 The Characteristic Polynomial

m ©Harald Racke

The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,

Tn]-Tn-1]=Tn-1]-T[n - 2] (n=2)

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
ITn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

or
Tin]=2T[n-1]-T[n - 2] (n=2)

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
ITn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1] = 2.

m 6.3 The Characteristic Polynomial =]
©Harald Racke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
[—
(A-1)2

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
[—
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
[—
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

T[0] =1 gives xx = 1.

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
[—
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

T[0] =1 gives xx = 1.

T[1]=2givesl1+=2= =1.

m 6.3 The Characteristic Polynomial
©Harald Racke

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=T[n-2]+ (n-1)=2

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

Difference:

ITnl-Tn-1]=Tn-1]-Tn-2]+2n-1

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

Difference:

Tnl-Tn-1]=Tn-1]-Tn-2]+2n-1

Tn]l=2Tn-1]1-Tn-2]+2n-1

Tnl=2Tn-1]1-Tn-2]1+2n-1

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tn]=3Tn-1]-3T[n-2]+T[n-3]+2

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tn]=3Tn-1]-3T[n-2]+T[n-3]+2

and so on...

6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= > anz'y

n=0

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= > anz'y

n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is
a
F(z)= > ?"z".

|
n=0 "

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.

m 6.4 Generating Functions =
©Harald Racke

6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

1
F(Z)ZE.

‘m 6.4 Generating Functions =
©Harald Racke

6.4 Generating Functions

There are two different views:

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := > ,.0(an + by)z".

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := > ,.0(an + by)z".

> Multiplication: f - g:= >, qcnz™ with ¢y = S _gapbn p.

‘m 6.4 Generating Functions =] =
©Harald Racke

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f + g := > ,.0(an + by)z".

> Multiplication: f - g:= >, qcnz™ with ¢y = S _gapbn p.

There are no convergence issues here.

‘m 6.4 Generating Functions =] =
©Harald Racke

6.4 Generating Functions

The arithmetic view:

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

The arithmetic view:

We view a power series as a function f: C — C.

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

The arithmetic view:
We view a power series as a function f: C — C.

Then, it is important to think about convergence/convergence
radius etc.

‘m 6.4 Generating Functions =]
©Harald Racke

6.4 Generating Functions

1

What does >.,,-0z" = ;=5 mean in the algebraic view?

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

What does >, z" = ﬁ mean in the algebraic view?

It means that the power series 1 — z and the power series
>us02z™ are invers, i.e.,

o0

(1—2)-(22")=1.

n=0

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

What does >, z" = 112 mean in the algebraic view?

It means that the power series 1 — z and the power series
D=0 2™ are invers, i.e.,

(1-2)- (3 2")=1.

n=0

This is well-defined.

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Suppose we are given the generating function

zznzil .

n=0 -z

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Suppose we are given the generating function

Zznzil .

n=0 -z

We can compute the derivative:

n-1 _ 1
znz —(1_2)2

nx=1

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Suppose we are given the generating function

Zz":i.

n=0 -z

We can compute the derivative:

1
nz"l=__——— _
nzz"l (1 - 2)2
——— ——
Snso(n+1)zn

‘m 6.4 Generating Functions = =
©Harald Racke

6.4 Generating Functions

Suppose we are given the generating function

Zznzil .

n=0 -z

We can compute the derivative:

n-1 _ 1
> nztl = TSE

nx1
—_—
ano(nH)Z"

Hence, the generating function of the sequence a, =n+1
is 1/(1—2z)°.

‘m 6.4 Generating Functions =]
©Harald Racke

6.4 Generating Functions

We can repeat this

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We can repeat this

z (m+1)z" 1

n=0

T (1-22

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We can repeat this

1
n+1)z" = —— .
ngo() (1 - 2)2
Derivative: >
n-1 _
Zn(n+1)z ESE

nx=1

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We can repeat this

1
m+1)zht"= —"F— .
ngo) (1 - 2)2
Derivative: >
> nn+1)z"! = e
n>1 (1-2)
ano(n+{)(n+2)z"

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We can repeat this

1
m+1)z"= — .
ngo (1 - 2)2
Derivative: >
> nn+1)z"! = e
n>1 (1-2)
ano(n+1)(n+2)z"

Hence, the generating function of the sequence

an=Mm+1)(n+2)is ﬁ

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Computing the k-th derivative of > z".

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Computing the k-th derivative of > z".

zn(n—l).___.(n_k+1)zn_k

nx=k

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Computing the k-th derivative of > z".

Snm-1)-...-m-k+1)z" k=Y (n+k)

nx=k n=0

s (m+ D)2

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Computing the k-th derivative of > z".

Snm-1)-...-m-k+Dz" =Y n+k)-...-n+1)z"
n=k n=0
K
- (l—z)k+1 '
& = =

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

Computing the k-th derivative of > z".

dnm-1)-...-m-k+1z"* = > m+k)-...-(n+1)z"
n=k n=0

K

_(l—Z)kH '
Hence:

m 6.4 Generating Functions = =
©Harald Racke

6.4 Generating Functions

Computing the k-th derivative of > z".

d>nm-1)-...-m-k+Dz" = > m+k)-...-(m+1)z"
n=k n=0

K

_(1—Z)k+1 '
Hence:

The generating function of the sequence a, = ("zk> is W

‘m 6.4 Generating Functions = =
©Harald Racke

6.4 Generating Functions

dnz= > (n+1z" - > "

n=0 n=0 n=0

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

dnz= > (n+1z" - > "

n=0 n=0 n=0

1
T (1-2)2 1-z

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

dnz= > (n+1z" - > "

n=0 n=0 n=0
-~ 1 1
T (1-22 1-z
_ 4
C(1-2)2

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
1 1
T (1-22 1-z
_ z
- (1-2)2

The generating function of the sequence a, = nis =.

m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We know

1
Dyt =

n=0 1_y

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We know
1
yht=—"
ngo 1- y
Hence,
Z anz" = 1
"0 l1-az

‘m 6.4 Generating Functions
©Harald Racke

6.4 Generating Functions

We know

]
2
S
I
-

Hence,

The generating function of the sequence f;, = a™ is

1

l-az*

m 6.4 Generating Functions
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z) = Z anz"

n=0

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z) = Z anz"

n=0

=aop+ Z (An-1+1)z"
n=1

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0
ao + Z (An-1+1)z"

nx=1

l+z > anaz™ 1+ > 2"
nx>1 nx>1

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0
ao + Z (An-1+1)z"

nx=1

l+z > anaz™ 1+ > 2"
nx>1 nx>1

zZanz"-l—zz"

n=0 n=0

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and

ag = 1.
A(z) = Z anz"
n=0

=ap+ Z (ap-1+1)z"
nx=1

=1+z> an1z"t+ > z"
nx=1 nx=1

=z Z anz" + z z"

n=0 n=0
=zA(z) + > "

n=0

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0

ao + Z (An-1+1)z"
n=1

l+z > anaz™ 1+ > 2"
nx>1 nx>1

:zZanz"-l—zz"
n=0 n=0

=zA(z) + > "
n=0

1
1-z

=ZA(z) +

m 6.4 Generating Functions =
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

1

A2 =gz

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

I
(1-2)2

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

1 J—
(1-2)2

>(n+1)z"

n=0

6.4 Generating Functions

m ©Harald Racke

Example: a, = ay-1 + 1,a90 =1

Solving for A(z) gives

z anz" = A(z) =

n=0

1 J—
(1-2)2

Hence, a, = n + 1.

>(n+1)z"

n=0

6.4 Generating Functions

m ©Harald Racke

Some Generating Functions

n-th sequence element

generating function

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

1

1
1-z

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?

m 6.4 Generating Functions
©Harald Racke

Some Generating Functions

n-th sequence element

generating function

1

n+1

(")

1
1-z
1
(1-2)?
1
(1 _ Z)k+1

m 6.4 Generating Functions
©Harald Racke

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1 _ Z)k+1
z
(1-2)?

m 6.4 Generating Functions
©Harald Racke

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1 _ Z)k+1
z
(1-2)?
1
1-az

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1 _ Z)k+1
z
(1-2)?
1
1-az
z(1+2)
(1-2)3

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element generating function
1 1
1-z
1
n+1 7(1 7
(n+k) 1
k (1 = z)k+1
n z
(1-2)?
1
n
a 1-az
2 z(1+z)
n (1-2)3
o e

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

cfn

cF

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

cfn

Sn+9n

cF

F+G

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

cfn
Sn+9n

Z?:o Sfign-i

cF

F+G

m ©Harald Racke

6.4 Generating Functions

Some Generating Functions

n-th sequence element

generating function

cfn
Sn+9n
Z?:o Sfign-i

fn-x (n=k); 0 otw.

cF

F+G

ZkF

m 6.4 Generating Functions
©Harald Racke

Some Generating Functions

generating function

n-th sequence element
cfn cF
Sn+gn F+G
Z?:o Jign-i F-G
Fnk (n=k); 0 otw. zkF
o)

6.4 Generating Functions

m ©Harald Racke

Some Generating Functions

n-th sequence element generating function
cfn cF
Sn+n F+G
Sito fign-i F-G
Fnk (n=k); 0 otw. zkF
o fi f (_Z;
h i

6.4 Generating Functions

m ©Harald Racke

Some Generating Functions

n-th sequence element

generating function

cfn cF
Sn+9n F+G
Yo fign-i F-G
Fnk (n=k); 0 otw. zkF
F(z)
ico fi -2
o ZdF(Z)
dz
c"fn F(cz)

6.4 Generating Functions

m ©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

m 6.4 Generating Functions =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

‘m 6.4 Generating Functions =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

‘m 6.4 Generating Functions =] =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

‘m 6.4 Generating Functions =] =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

m 6.4 Generating Functions =] =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

» partial fraction decomposition (Partialbruchzerlegung)

m 6.4 Generating Functions =] =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
» lookup in tables

m 6.4 Generating Functions =] =
©Harald Racke

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.
2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:
» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

6. The coefficients of the resulting power series are the a,,.

m 6.4 Generating Functions =] =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1
1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) = ap + Z anz"
nx=1

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) = ap + Z anz"
nx=1

2. Plug in:

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

A(z) = ap + Z anz"
nx=1

2. Plug in:
A(z) =1+ D> (Ran-1)z"

nx=1

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.
Az) =1+ > (Qap-1)z"

nx=1

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1
nx=1

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1
nx=1

=1+222anz"

n=0

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1
nx=1

=1+222anz"

n=0

=1+2z-A(z)

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1
nx=1

=1+222anz"

n=0

=1+2z-A(z)

4. Solve for A(z).

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.
Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1
nx=1

=1+222anz"

n=0

=1+2z-A(z)

4. Solve for A(z).
1

A2) = 1-2z

‘m 6.4 Generating Functions =]
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1
5. Rewrite f(z) as a power series:

1

Az) = 1-2z

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1
5. Rewrite f(z) as a power series:

1

n_ =
> anz™ = A(z) T

n=0

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

D> anz" = A(z) =

n=0

1-2z

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

1. Set up generating function:

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

1. Set up generating function:

A(z) = Z anz"

n=0

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

2./3. Transform right hand side:

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:
A(z) = > anz"

n=0

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:
A(z) = > anz"

n=0

=ap+ > anz"
nx=1

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:
A(z) = > anz"
n=0

=ap+ > anz"
nx=1
=1+ Z Ban-1 +n)z"
nx=1

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:
A(z) = > anz"
n=0

=ap+ > anz"
nx=1
=1+ Z Ban-1 +n)z"
nx=1

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:
A(z) = > anz"

n=0
=ap+ > anz"
nx=1
=1+ Z Ban-1 +n)z"
nx=1
=1+3z > ap1z" '+ > nz"
n=1 n=1
=1+3z Zanz”+ znz"
n=0 n=0

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
2./3. Transform right hand side:
A(z) = > anz"

n=0
=ag+ > anz"
nx=1
=1+ Z Ban-1 +n)z"
nx=1
=1+3z > ap1z" '+ > nz"
n=1 n=1
=1+3z Zanz”+ znz"
n=0 n=0
—1+32A(2) + ————
a (1-2)2

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

4. Solve for A(z):

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

4. Solve for A(z):

A(z) =1+ 3zA(z2) +

.
(1-z

)2

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

4. Solve for A(z):

A(z) =1+ 3zA(z2) +

gives

1-2)2+z
(1-32)(1-2)2

A(z) =

.
(1-z

)2

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
4. Solve for A(z):
z
A(z) =1+ 3zA(z2) + m
gives

1-2)2+z z2—z+1

A =T 3na-22 " a-sa -2

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1
(1-32)(1-2)2

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:
We use partial fraction decomposition:

z2—z+1 A B

C

(1—32)(1—2)2_1—3z+1—zJr

(1-2)2

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z22-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

This gives
22 z41=A1-22%+B(1-32)(1-2)+C(1-32)

‘m 6.4 Generating Functions =
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z22-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

This gives
22 z41=A1-22%+B(1-32)(1-2)+C(1-32)

=A(1-2z+2%)+B(1-4z+32z%) +C(1-32)

‘m 6.4 Generating Functions = =
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z22-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

This gives
22 z41=A1-22%+B(1-32)(1-2)+C(1-32)
=A(1-2z+2%)+B(1-4z+32z%) +C(1-32)

=(A+3B)z>+ (-2A-4B-3C)z+ (A+B+C)

‘m 6.4 Generating Functions = =
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1

m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
which gives
7 1
Azf B:—f =
4 4 ¢

N | =

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

‘m 6.4 Generating Functions
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1
5. Write f(z) as a formal power series:

7 1 1 1 1
AD) =1 773,713 1.2 2

1

(1-2)2

6.4 Generating Functions

m ©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 11 1 1
Alz) = = . _ = B S
B =y 13272 1-2z 2 0-2°
7 1 1
=2 >3- Y 2o Y (n+ 2"
4 4 2
n=0 n=0 n=0

m 6.4 Generating Functions =
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 11 1 1
A(z) = = - . B
)=y 173z 2 1.z 2 (1-272
N L I I N C RSP
4 4 2
n=0 n=0 n=0
— Z n_l_l n
- (4 3"~ 2(n+1))z
n=0

m 6.4 Generating Functions =
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

7 1 11 1 1
A(z) = = - . B
)=y 173z 2 1.z 2 (1-272
N L I I N C RSP
4 4 2
n=0 n=0 n=0
— Z n_l_l n
- (4 3"~ 2(n+1))z
n=0
_ 7o oan_ 1 3\ 4
(4 3T gn 4)2
n=0

m 6.4 Generating Functions =
©Harald Racke

Example: a, = 3a,-1 + n,a9 =1

5. Write f(z) as a formal power series:

A(z) =

6. This means a, = %3" — %n —

7 1

1 1

n=0

56
n%O (g .

1
4 1-3z 4 1-z 2
7

Ty Ly

s w

m ©Harald Racke

6.4 Generating Functions

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn=Jn-1-funoforn=2.

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn="Jn-1"fno2forn=>2.
Define

gn =1og fn .

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn="Jn-1"fno2forn=>2.
Define
In = logfn .
Then

In =9Gn-1+gn-—2 forn =2

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn="Jn-1"fno2forn=>2.
Define
In = logfn .
Then

9n =9gn-1+9gn-2forn=2
g1 =log?2 = 1(for log = log,), go =0

m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn="Jn-1"fno2forn=>2.
Define
In = Ingn .
Then

In =9gn-1+gn-2forn=2
g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn="Jn-1"fno2forn=>2.
Define
In = Ingn .
Then

In =9gn-1+gn-2forn=2

g1 =log?2 = 1(for log = log,), go =0
Ign = Fn (n-th Fibonacci number)

fn = ZF"

m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 10

fi=1
fn=3f%+n;forn=2k,k21;

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 10

fi=1
fn=3f%+n;forn=2k,kzl;

Define
gk = fok -

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 10
fi=1
fn=3f% +n;form=2%K k>1;
Define
gk = fok -
Then:
go=1

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6.5 Transformation of the Recurrence

Example 10
fi=1
fn=3f% +n;form=2%K k>1;
Define
gk = fok -
Then:
go=1

gk =3gk1+2K k=1

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get

gk =3 [gr-1] + 2K

m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get

Gk =

w W

[gk-1] + 2%
[Sgk_z + 2"‘1] + 2k

m ©Harald Racke

6.5 Transformation of the Recurrence

6 Recurrences
We get

gk =3 [gr—1] + 2K
=3 [Sgk_z + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get
gk =3 [gk-1] + 2K
=3 [Sgk_z + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k
=32 [3gk_3 n 2’<—2] +32k-1 4 ok

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get

gk =3 [gr-1] + 2%
=3 [Sgk_z + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k

=33gy_3 + 322k=2 3pk-1 4 Dk

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get

gk =3 [gr-1] + 2%
=3 [Sgk_z + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k
= 33gk—_3 + 322K72 4 32k71 4 2k
k

=2k ¥ (%)l

i=0

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get

gk =3 [gr—1] + 2K
=3 [Sgk_z + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k
=33gy_3 + 322k=2 3pk-1 4 Dk
k .
3\1
k
=263 (3)
i=0
(%)k+1 -1

— ok,
=2 12

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences
We get

gk =3 [gr—1] + 2K
=3 [Sgk_z + 2"‘1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k
=33gy_3 + 322k=2 3pk-1 4 Dk
k .
3\1
k
=263 (3)
i=0
(%)k+1 -1

_ 3k+1 _ 2k+1
1/2

= 2k,

‘m 6.5 Transformation of the Recurrence
©Harald Racke

6 Recurrences

Let n = 2k:

gk = 3%+ —2k*1 hence
fan=3-3k-2.2k

m ©Harald Racke

6.5 Transformation of the Recurrence

6 Recurrences

Let n = 2k:

m ©Harald Racke

6.5 Transformation of the Recurrence

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k —_92. 2k
_ 3(2k)log3 _2. 2k

m ©Harald Racke

6.5 Transformation of the Recurrence

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence
fn=3-3k-2.2k
_ 3(210g3)k —_92. 2k
_ 3(2k)log3 _2. 2k

=3nlo83 _2p .

m ©Harald Racke

6.5 Transformation of the Recurrence

	Foundations
	Goals
	Modelling Issues
	Asymptotic Notation
	Recurrences
	Guessing+Induction
	Master Theorem
	The Characteristic Polynomial
	Generating Functions
	Transformation of the Recurrence

