Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen (LEA) Prof. Dr. Ernst W. Mayr Moritz Fuchs

Automata and Formal Languages

Due January 20, 2015 before class!

Exercise 1 (Büchi-Automata - 10 points)

Given a Büchi automaton A and finite words u,v, decide whether A accepts the $\omega\text{-word}\;uv^\omega$

Exercise 2 (ω -expressions I)

Let $\Sigma = \{a, b, c\}$. Give an ω -expression for each of the following languages:

(a) $L_1 = \{w \mid ab \text{ occurs only finitely often in } w\}$

(b) $L_2 = \{w \mid \text{every '}a' \text{ is immediately followed by a '}b'\}$

(c) $L_3 = \{w \mid \text{every 'b' is preceded by an 'a'} \}$

Exercise 3 (ω -expressions II - 10 points)

Give Büchi- and Muller-automata for the following languages:

(a)
$$r_1 = (a^*b)^{\omega}$$

(b)
$$r_2 = (010^*)^\omega + 1^\omega$$

(c) $r_3 = (ab + bc + a)^{\omega}$

Exercise 4 (Ranking - 10 points)

Consider the following Büchi- automaton B representing the ω -words over $\Sigma = \{a, b\}$ having only finitely many as:

- (a) Sketch dag $(abab^{\omega})$ and dag $((ab)^{\omega})$.
- (b) Consider the ranking r defined as $r(\langle q_0, i \rangle) = 1$ and $r(\langle q_1, i \rangle) = 0$ for all $i \in \mathbb{N}$. Is r an odd ranking for the two dags from (a)?
- (c) Show:

Ranking r defined in (b) is odd
$$\Leftrightarrow w \notin \mathcal{L}(B)$$