Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen (LEA) Prof. Dr. Ernst W. Mayr Moritz Fuchs

Automata and Formal Languages

Due October 14, 2014 before class!

The purpose of this problem set is to repeat basic concepts already acquired in introductory courses.

Exercise 1 (Regular expressions - 10 points)

- (a) Describe the regular languages induced by the following regular expressions in your own words:
 - $r_1 = 0^* 10^* (0^* 10^* 10^*)$
 - $r_2 = 00(0+1)^*$
- (b) Decide whether the following languages are regular or not. Justify your decision.
 - $\mathcal{L}_1 = \{0^n 1^n \mid n \in \mathbb{N}\}$
 - $\mathcal{L}_2 = \{ \omega \in \{0, 1\}^* \mid \omega \text{ contains the same number of 1s and 0s} \}$

Exercise 2 (Basic Automata - 10 points)

Give an automaton (NFA or DFA) that accepts

- (a) All binary strings of length divisible by 5.
- (b) All binary strings of length divisible by 3 or 5. How would you have to change your automaton in order to accept all binary strings of length divisible by 3 and 5?
- (c) Decimal numbers divisible by 3 or 9.

Exercise 3 (NFA to DFA - 10 points)

Let r be the regular expression $(a(b+c)^*(a+b))$ over the alphabet $\Sigma = \{a, b, c\}$.

- (a) Give a non-deterministic finite automaton (NFA) recognizing $\mathcal{L}(r)$.
- (b) Convert the NFA from (a) into a DFA using the Myhill-construction.

Exercise 4 (10 points)

- (a) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA with |Q| = n. Prove or disprove: If there exists a word ω with $|\omega| > n$ s.t. $\omega \in \mathcal{L}(M)$ then $\mathcal{L}(M)$ is an infinite language.
- (b) Let L_1 and L_2 denote regular languages. We define the *zipper-product* (sometimes also referred to as *shuffle-product*) as

 $L_1 \% L_2 = \{ a_1 b_1 a_2 b_2 \dots a_n b_n \mid a_1 a_2 \dots a_n \in L_1 \land b_1 b_2 \dots b_n \in L_2 \}.$

Prove or disprove: $L_1 \% L_2$ is regular.