
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen (LEA)
Prof. Dr. Ernst W. Mayr
Moritz Fuchs

Winter Semester 2014/15
Programming Assignment

December 02, 2014

Automata and Formal Languages

1 Programming Assignment

Your task is to write a C++/Java program that transforms a given Presburger formula
into a finite automaton recognizing its solution space.

1.1 Input

Your program will receive a string <name> containing the name of file in the current
directory. This file contains a Presburger formula which is recognizable by the grammar
PA.g which you can download from the course homepage.
Sample program call: pa2fa test1.txt

1.2 Output

Your program should create a file <name>.dotty where <name> is the filename of the input
file. The file should contain the minimal finite automaton recognizing the solution space
of the given Presburger formula. The i-th component of the automaton should correspond
to the i-th free variable (we will specify in a second what the i-th variable is).
The output file has the following form:

digraph G {

<list of edges>

<list of final states>

<initial state>

}

<list of free variables>

where

• <list of edges> is a sequence of lines each containing <source> -> <target>

[label=<label>]; . The lines are ordered by <source>, edges from the same <sour-
ce> are ordered by <target>.

• <list of final states> is a sequence of lines each containing <state>[peripheries=2];

sorted by <state>. The sequence contains all final states.

• <initial state> is a line containing <state>[shape=<diamond>];, where <state>
is the initial state of the automaton.



• <source>, <target> and <state> are integers representing the states of the auto-
maton.

• <label> contains all input symbols on the transition between <source> and <tar-

get>. It must be recognizable by the regular expression ((0 + 1)n<space>)∗ where
n is the number of free variables.

• <list of free variables> contains all free variables of the Presburger formula.
The i-th component of the automaton you create must correspond to the i-th variable
in this list. If there are no free variables in the formula print true if the formula is
a tautology and false if the formula is a contradiction.

You can check your output by importing it into GraphViz1.

1.2.1 Sample Output

The formula (((2x-y<=2 && Ew y-4w==0) && x+y>=4) && Ez x-4z==0) should produ-
ce the following output:

digraph G {

0 -> 1 [label="00 "];

0 -> 2 [label="01 10 11 "];

1 -> 2 [label="01 10 11 "];

1 -> 3 [label="00 "];

2 -> 2 [label="00 01 10 11 "];

3 -> 3 [label="00 "];

3 -> 4 [label="01 "];

3 -> 5 [label="10 11 "];

4 -> 4 [label="00 01 "];

4 -> 5 [label="10 11 "];

5 -> 4 [label="01 "];

5 -> 5 [label="00 11 "];

5 -> 6 [label="10 "];

6 -> 5 [label="00 01 "];

6 -> 6 [label="10 11 "];

4[peripheries=2];

0[shape=diamond];

}

xy

More examples are available on the course homepage.

1http://www.graphviz.org

2



1.3 Subtasks

The assignment can be split into several subtasks as follows:

(a) Write a transducer library and implement the algorithms you learned in the lecture
(union, intersection, projection, ...).

(b) Implement a parser for the input file using ANTLR.2

(c) Transform the resulting AST into an automaton recognizing the solution space of the
given Presburger formula.

(d) Bonus (will not count towards your score, but might be fun to implement/think
about):

• Implement an algorithm that counts the number of solutions to the given formula.
(Remember: Each solution has infinitely many encodings!)

• Add a parameter -sample=x to your program. The program should provide x

distinct solutions to the given formula (e.g. in a separate file). Sample program
call: pa2fa -sample=20 test1.txt

• Add a parameter -max=<formula>. Your program maximizes the given formula
while only using variable assignments that satisfy the Presburger formula. Sample
program call: pa2fa -max=x+y-z test1.txt

1.4 What to hand in

By January 13, 2015 you have to hand in

• A compiled executable file or an executable .jar file.

• A zip-file containing all source files including external libraries that you used. The
source code should be well-commented, in particular every class and method should
come with a brief description on what it does. We should be able to compile your
source code using the contents of this zip-file!

• A file description.txt containing a high level description of your program as well as
compile instructions for your program (’Import into eclipse and run’ does not count
as compile instruction!)

You are allowed to work in groups of up to two students.

Please send your solution to fuchsmo@in.tum.de using the subject line

’AFS Programming Contest - <Names of group members>’

2http://www.antlr.org

3



1.5 What you are allowed to use

• ANTLR for parsing the input file using the grammar provided on the course home-
page.

• All built-in functionalities of Java/C++.

• Other libraries that do not provide automata functionalities (e.g. Google Guava)

You are not allowed to use existing transducer/automata libraries.

1.6 Price

All submissions will be tested against a fixed set of benchmarks. The team that solves
most benchmarks wins the contest. Ties will be broken using runtimes.

• 1st price: A crate of beer∗

• 2nd price: A bottle of wine∗

• Other participants whose submissions are recognized as reasonable: candy :)

∗ or some other drink of your choice.

4


