Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen (LEA) Prof. Dr. Ernst W. Mayr Moritz Fuchs

Automaten und formale Sprachen

Last Name	First Name	Matriculation No.	Signature

General Information

- Please fill in the fields above and write your name and matriculation number on all extra supplementaries provided.
- Please keep your student's card and an identity card available.
- Do not use pencils! Do not use red or green ink!
- You are not allowed to use any device other than your pens and a double-sided handwritten A4 sized paper.
- You have 180 minutes to answer the questions.

Left Lecture Hall from to / from to Submitted early at Special notes:

_	A1	A2	A3	A4	A5	A6	A7	A8	Σ	Examiner
Points	8	5	6	6	10	6	10	9	60	
1^{st} correction										
2^{nd} correction										

Problem 1 (8 Points)

Answer the following questions in one or two short sentences. If the answer is 'yes' or 'no' please justify your choice briefly.

a) Which words does the language $\mathcal{L}(\emptyset^*)$ contain?

- b) Which words does the ω -language $\mathcal{L}(\emptyset^{\omega})$ contain?
- c) Why do regular languages have finitely many residuals?
- d) Are finite ω -languages always ω -regular?
- e) Are finite languages of finite words always regular?
- f) Are regular languages equivalent to type-0 languages in the Chomsky hierarchy?
- g) Are DBAs and NRAs equally expressive?
- h) Are the following statements equivalent?
 - (1) The set of states $F = \{q_1, q_2, ..., q_k\}$ is visited infinitely often
 - (2) $\exists i \in \{1, ..., k\} : q_i \text{ is visited infinitely often}$
- i) **Bonus-question:** In which year was Mojzesz Presburger born and who mentored his MA-Thesis?

Problem 2 (5 Points)

Prove or disprove:

- (a) $L_1 = \{ w \in \{a, b\}^* \mid abw = wba \}$ is regular.
- (b) $L_2 = \{a^n b^m \mid n \le 10^9 \land m \le 10^n\}$ is regular.
- (c) $L_3 = \{w \in \{a, b, (,)\}^* \mid \text{The numbers of opening and closing brackets in } w \text{ are equal} \}$ is regular.
- (d) $L_4 = \{w \in \{a, b, c\}^{\omega} \mid \text{If } a \in \inf(w) \text{ then } c \notin \inf(w)\}$ is ω -regular.
- (e) $L_5 = \{w \in \{a, b, c\}^{\omega} \mid \text{For all finite prefixes } v \text{ of } w \text{ the number of } as \text{ in } v \text{ equals the number of } bs \text{ in } v.\}$ is ω -regular.

Remarks:

- A finite automaton recognizing a given language is regarded as a proof for regularity.
- You may use the fact that $\{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Problem 3 (6 Points)

Consider the following regular expressions:

- $r_1 = ab^*(a+b)^*c$
- $r_2 = a(a + bc + c^*)^*a$
- $r_3 = \Sigma^* (abc + bca + cab) \Sigma^*$
- (a) Describe in words the language induced by each regular expression above.
- (b) Construct a finite automaton (NFA or DFA) for each regular expression above.
- (c) Give an MSO-sentence for each regular expression above.

Problem 4 (6 Points)

The derivative of a language $L \subseteq \Sigma^*$ with respect to a symbol $a \in \Sigma$ is defined as:

$$\frac{\delta L}{\delta a} = \{ w \mid aw \in L \}$$

- (a) Show that if L is regular then $\frac{\delta L}{\delta a}$ is regular as well.
- (b) Let $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ be regular languages. Show how to express the derivative of L_1L_2 with respect to *a* using the rule for the derivative of a single language above.

Problem 5 (10 Points)

For any given language $L \subseteq \Sigma^*$, let L_{pre} (resp. L_{suf}) denote the language containing all prefixes (resp. all suffixes) of the words in L.

- (a) Given a finite automaton A s.t. $\mathcal{L}(A) = L$, construct a finite automaton B s.t. $\mathcal{L}(B) = (L_{pre})_{suf}$.
- (b) Let $r = (ab+a)^*c$ be a regular expression over $\Sigma = \{a, b, c\}$. Give a regular expression $r_{pre,suf}$ s.t. $\mathcal{L}(r_{pre,suf}) = (\mathcal{L}(r)_{pre})_{suf}$.

Problem 6 (6 Points)

Let $L \subseteq \Sigma^*$ be a regular language. Show how to construct a transducer that accepts

$$L' = \{ (a_1 a_2 \dots a_n, b_1 b_2 \dots b_n) \mid a_1 a_2 \dots a_n \in L \land$$
$$b_1 b_2 \dots b_n \in L \land$$
$$\exists c \in \Sigma^n : a_1 b_1 c_1 a_2 b_2 c_2 \dots a_n b_n c_n \in L \}.$$

Explain your construction.

Problem 7 (10 Points)

- (a) Let $\Sigma = \{a, b, c\}$. Give an NBA, an NMA and an NRA for each of the following languages:
 - (1) $L_1 = \{w \mid \text{every } b \text{ and } c \text{ is preceded (not necessarily immediately) by an } a\}$
 - (2) $L_2 = \{w \mid \text{every } b \text{ is preceded by an } a \text{ and succeeded by a } c\}$ (as before, preceded/succeeded does not necessarily imply immediacy)
- (b) Let A and B be two NBAs. We define the shuffle-product of two ω -languages as

$$s(L_1, L_2) = \{ w_0^1 w_0^2 w_1^1 w_1^2 \dots \mid w^1 \in L_1 \land w^2 \in L_2 \}.$$

Show how to construct an NBA that recognizes the language $s(\mathcal{L}(A), \mathcal{L}(B))$. Explain your solution.

Problem 8 (9 Points)

Use the method from class to generate a finite automaton recognizing the solution space of the following Presburger formula. Include all intermediate steps. You may merge trap states at any point during the procedure.

 $\forall x : x > 1 \land x + y > 2$