
Solving the first problem

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the

ranking such that no state of the level owes a visit
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely
many breakpoints.

– We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.

AFS 2 Implementing Boolean Operations for Büchi Automata 414/431
c©je/ewm

Owing states

2
⊥

௔
→ 1

2
௕
→ 1

⊥
௔
→ 1

0
௔
→ 1

0 	…	

{଴ݍ} {ଵݍ} ∅ {ଵݍ} ∅

AFS 2 Implementing Boolean Operations for Büchi Automata 415/431
c©je/ewm

Owing rankings

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …	

∅ {ଵݍ} {଴ݍ} ,଴ݍ} {ଵݍ {଴ݍ}

AFS 2 Implementing Boolean Operations for Büchi Automata 416/431
c©je/ewm

• For a two-state ܣ	(the case of more states is
analogous):

– States: all pairs
݊ଵ
݊ଶ ,ܱ wher accepting states get

even rank, and ܱ is set of owing states (of even rank)

– Initial states: all
݊ଵ
⊥ , {଴ݍ} where ݊ଵ even if ݍ଴

accepting.

– Transitions: all
݊ଵ
݊ଶ ,ܱ	

௔
→ ݊ଵᇱ

݊ଶᇱ
,ܱ′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
݊ଵ
݊ଶ ,∅

Second draft for ̅ܣ

AFS 2 Implementing Boolean Operations for Büchi Automata 417/431
c©je/ewm

• The runs of ̅ܣ on a word ݓ correspond to all
the rankings of ݀ܽ݃ ݓ .

• The accepting runs of ̅ܣ on a word ݓ
correspond to all the odd rankings of
݀ܽ݃ ݓ .

• Therefore: 	ܮ ܣ̅ = 		(ܣ)ܮ

AFS 2 Implementing Boolean Operations for Büchi Automata 418/431
c©je/ewm

Solving the second problem
Proposition: If ݓ is rejected by ܣ, then ݀ܽ݃(ݓ)	has an odd
ranking in which ranks are taken from the range 0,2݊ ,
where ݊ is the number of states of ܣ. Further, the initial
node gets rank 2݊.
Proof: We construct such a ranking as follows:

• we proceed in ݊ + 1 rounds (from round 0 to round ݊), each
round with two steps ݇. 0 and ݇. 1 with the exception of
round ݊ which only has ݊. 0

• each step removes a set of nodes together with all its
descendants.

• the nodes removed at step ݅. ݆ get rank 2݅ + ݆
• the rank of the initial node is increased to 2݊ if necessary

(preserves the properties of rankings).

AFS 2 Implementing Boolean Operations for Büchi Automata 419/431
c©je/ewm

The steps
• Step ݅. 0 : remove all nodes having only finitely

many successors.
• Step ݅. 1 : remove nodes that are non-accepting

and have no accepting descendants

• This immediately guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can

only be removed at step ݅. 0
• It remains to prove: no nodes left after ݊ + 1

rounds .

AFS 2 Implementing Boolean Operations for Büchi Automata 420/431
c©je/ewm

AFS 2 Implementing Boolean Operations for Büchi Automata 421/431
c©je/ewm

• To prove: no nodes left after n rounds .
• Each level of a dag has a width

• We define the width of a dag as the largest level
width that appears infinitely often.

• Each round decreases the width of the dag by at
least 1.

• Since the intial width is at most ݊ after at most ݊
rounds the width is 0, and then step ݊. 0 removes all
nodes.

AFS 2 Implementing Boolean Operations for Büchi Automata 422/431
c©je/ewm

• For a two-state ܣ	(the case of more states is
analogous):

– States: all pairs
݊ଵ
݊ଶ ,ܱ where ܱ set of owing

states and accepting states get even rank

– Initial state: all 2݊
⊥ , {଴ݍ}

– Transitions: all
݊ଵ
݊ଶ ,ܱ	

௔
→ ݊ଵᇱ

݊ଶᇱ
,ܱ′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
݊ଵ
݊ଶ ,∅

Final ̅ܣ

AFS 2 Implementing Boolean Operations for Büchi Automata 423/431
c©je/ewm

An example

• We construct the complements of
ଵܣ = (ݍ , ܽ , ,ߜ ݍ , ݍ) with ߜ ܽ,ݍ = {ݍ}
ଶܣ = (ݍ , ܽ , ,ߜ ݍ ,∅) with ߜ ܽ,ݍ = {ݍ}

• States of ܣଵ:
0,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• States of ܣଶ:
0,∅ , 1,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• Initial state of ܣଵand ܣଶ: 2, {ݍ}

AFS 2 Implementing Boolean Operations for Büchi Automata 424/431
c©je/ewm

An example

• Transitions of ܣଵ:
2, {ݍ}

௔
→ 2, {ݍ} 	, 2, {ݍ}

௔
→ 0,∅ , 0, {ݍ}

௔
→ 0, {ݍ}

• Transitions of ܣଶ:
2, {ݍ}

௔
→ 2, {ݍ} 	, 2, {ݍ}

௔
→ 1,∅ , 2, {ݍ}

௔
→ 0,∅ ,	

1,∅
௔
→ 1,∅ , 1,∅

௔
→ 0, {ݍ} ,

0, {ݍ}
௔
→ 0, {ݍ}

• Final states of ܣଵ: 0,∅ , 2,∅ (unreachable)
• Final states of ܣଶ: 0,∅ , 1,∅ , 2,∅ (only 1,∅ is

reachable)

AFS 2 Implementing Boolean Operations for Büchi Automata 425/431
c©je/ewm

AFS 2 Implementing Boolean Operations for Büchi Automata 426/431
c©je/ewm

Complexity

• A state consists of a level of a ranking and a
set of owing states.

• A level assigns to each state a number f [0,2݊]
or the symbol ⊥.

• So the complement NBA has at most
2݊ + 2 ௡ ∙ 2௡ ∈ ݊ை ௡ = 2ை ௡ ୪୭୥ ௡ states.

• Compare with 2௡ for the NFA case.
• We show that the log ݊ factor is unavoidable.

AFS 2 Implementing Boolean Operations for Büchi Automata 427/431
c©je/ewm

We define a family ܮ௡ ௡ஹଵ of ߱-languages s.t.
– ௡ܮ is accepted by a NBA with ݊ + 2 states.
– Every NBA accepting ܮ௡ has at least ݊! ∈ 2஀ ௡ ୪୭୥ ௡

states.

• The alphabet of ܮ௡ is Σ௡ = {1,2, … ,݊, #}.
• Assign to a word ݓ ∈ Σ௡ a graph (ݓ)ܩ as

follows:
– Vertices: the numbers 1,2, … ,݊ .
– Edges: there is an edge ݅ → ݆ iff w contains infinitely

many occurrences of 	݆݅.
• Define: ݓ ∈ ௡ܮ iff (ݓ)ܩ has a cycle.

AFS 2 Implementing Boolean Operations for Büchi Automata 428/431
c©je/ewm

• ௡ܮ is accepted by a NBA with ݊ + 2 states.

AFS 2 Implementing Boolean Operations for Büchi Automata 429/431
c©je/ewm

Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Let ߬ denote a permutation of 1,2, … ,݊ .
• We have:

a) For every ߬, the word	 ߬	# ఠ belongs to ௡ܮ (i.e.,
its graph contains no cycle).

b) For every two distinct ߬ଵ, ߬ଶ, every word
containing inf. many occurrences of ߬ଵ and inf.
many occurrences of ߬ଶ belongs to ܮ௡.

AFS 2 Implementing Boolean Operations for Büchi Automata 430/431
c©je/ewm

Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Assume ܣ recognizes ௡ܮ and let ߬ଵ, ߬ଶ distinct.

By (a), ܣ has runs ߩଵ, 	accepting	ଶߩ ߬_1	# ఠ,
߬ଶ	# ఠ. The sets of accepting states visited

i.o. by ߩଵ, ଶߩ are disjoint.
– Otherwise we can ``interleave‘‘ߩଵ,ߩଶ to yield an

acepting run for a word with inf. Many occurrences
of ߬ଵ, ߬ଶ , contradicting (b).

• So ܣ has at least one accepting state for each
permutation, and so at least ݊!	States.

AFS 2 Implementing Boolean Operations for Büchi Automata 431/431
c©je/ewm

