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Solving the first problem

» We use owing states and breakpoints again:

— A breakpoint of a ranking is now a level of the
ranking such that no state of the level owes a visit
to a node of odd rank.

— We have again: a ranking is odd iff it has infinitely
many breakpoints.

— We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.
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Owing states
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Second draft for A

 For a two-state A (the case of more states is
analogous):

n
— States: all pairs [n;] , 0 wher accepting states get
even rank, and O is set of owing states (of even rank)

— Initial states: all [""],{qo} where n, evenif o
accepting.

n a [n)
— Transitions: all [nl] 0 - [n,l] ,0' s.t. ranks don‘t
2 n
increase and owing states are correctly updated

. nq
— Final states: all states [nZ] @
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 The runs of 4 on a word w correspond to all
the rankings of dag (w).

 The accepting runs of 4 on a word w
correspond to all the odd rankings of
dag(w).

» Therefore: L(A) = L(A)
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Solving the second problem

Proposition: If w is rejected by 4, then dag(w) has an odd
ranking in which ranks are taken from the range [0,2n],
where n is the number of states of A. Further, the initial
node gets rank 2n.

Proof: We construct such a ranking as follows:

» we proceed in n + 1 rounds (from round O to round n), each
round with two steps k.0 and k. 1 with the exception of
round n which only has n.0

» each step removes a set of nodes together with all its
descendants.

* thenodesremovedatstepi.;j getrank 2i + j

 the rank of the initial node is increased to 2n if necessary
(preserves the properties of rankings).
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The steps

« Step i.0: remove all nodes having only finitely
many successors.

« Stepi.1:remove nodes that are non-accepting
and have no accepting descendants

» This immediately guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can
only be removed at step i. 0
* It remains to prove: no nodes left after n + 1
rounds .
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* To prove: no nodes left after n rounds .
 Each level of a dag has a width

» We define the width of a dag as the largest level
width that appears infinitely often.

 Each round decreases the width of the dag by at
least 1.

« Since the intial width is at most n after at most n

rounds the width is 0, and then step n. 0 removes all
nodes.
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Final A

 For atwo-state A (the case of more states is
analogous):

. m .
— States: all pairs [nﬂ ,0 where O set of owing

states and accepting states get even rank

— Initial state: all [ZLn] {40}

H'™ n1 a n:’l ! ‘
— Transitions: all [nz] ,0 > [n’] ,0" s.t. ranks don‘t
2
increase and owing states are correctly updated

. nq
— Final states: all states [nz] 0
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An example

We construct the complements of
A; = ({q}.{a},6,{q},{q}) with 6(q, a) = {q}
A; = ({q}.{a}, 6, {q}, ®) with 6(q, @) = {q}
States of A;:
(0,2),(2,0),(0,{q}), (2, {q})

States of 4,:

(0,0),(1,0),(2,0),(0,{q}) (2.{q})
Initial state of A,and 4,: (2,{q})
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An example

 Transitions of A;:

(2.{a}) > (2.{a}) (2,40 > (0,0), (0.{a}) = (0.{a})
 Transitions of 4,:
(2.{a) = (2.{a}) . 2.{a) = (1,0).(2.{a} > (0.0,
(1,0) (1,0, (1,8) > (0,{g},

(0,{ah) > (0,{q})
 Final states of A;: (0, ®),(2,®) (unreachable)

* Final states of 4,: (0, 0),(1,0), (2, @) (only (1, @) is
reachable)
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CompNBA(A)
Input: NBA A = (Q.%,6, qo, F)
Output: NBA A = (0, X, 6,7, F) with L,(A) = L,(A)
0.6,F <0
qo < [Iro,{qo}]
W { [Iro,{q0}] }
while W # 0 do
pick [/r, P] from W; add [Ir, P] to 0
if P =0 then add [/r,P] to F
forall a € X1/ € R such that Ir v It do
if P # 0 then P’ «— {q € §(P,a) | Ir'(q) is even }
else P" — {ge€ Q|1r(q)iseven}
add ([Ir, P),a.[Ir',P']) to &
11 if [/, P'] ¢ O thenadd [Ir,P’] to W
12 return (Q,%, 6, g, F)
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Complexity

A state consists of a level of a ranking and a
set of owing states.

A level assigns to each state a number f [0,21]
or the symbol L.

So the complement NBA has at most

(2n + 2)" - 2" € n0 = 20(mlogn) gtates,
Compare with 2" for the NFA case.

We show that the log n factor is unavoidable.
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We define a family {L,, },,>; of w-languages s.t.
— L, is accepted by a NBA with n + 2 states.

— Every NBA accepting L,, has at least n! € 20 logn)
states.

» The alphabetof L, isZ,, = {1,2,...,n,#}.
» Assigntoawordw € X, agraph G(w) as
follows:
— Vertices: the numbers 1,2, ..., n.

— Edges: there is an edge i — j iff w contains infinitely
many occurrences of ij.

» Define: w € L, iff G(w) has a cycle.
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» L, isaccepted by a NBA with n + 2 states.
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Every NBA accepting L,, has at least n! €
20(nlogn) states,

 Let 7 denote a permutationof 1.2,... . n.

* We have:

a) For every 7, the word (z #)® belongs to L, (i.e.,
its graph contains no cycle).

b) For every two distinct 7, 7,, every word
containing inf. many occurrences of 7; and inf.
many occurrences of 7, belongsto L,,.
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Every NBA accepting L,, has at least n! €
20(nlogn) states,

« Assume A recognizes L,, and let 7, 7, distinct.
By (a), A has runs p,, p, accepting (t_1 #)%,
(T, #)“. The sets of accepting states visited
l.0. by p,, p, are disjoint.

— Otherwise we can ““interleave*p,, p, to yield an
acepting run for a word with inf. Many occurrences
of 7, 7, , contradicting (b).

* S0 A has at least one accepting state for each

permutation, and so at least n! States.
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