2. Implementing Boolean Operations for Biichi Automata

AFS 2 Implementing Boolean Operations for Biichi Automata

©je/ewm

Intersection of NBAs

* The algorithm for NFAs does not work ...

(W@ @R

a

AFS 2 Implementing Boolean Operations for Biichi Automata
1111 e

AFS
©je/ewm

Solution

Apply the same idea as in the conversion NGA = NBA
1. Take two copies of the pairing [A1, A,].

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

Solution

Apply the same idea as in the conversion NGA = NBA
1. Take two copies of the pairing [A1, A,].

2. Redirect transitions of the first copy leaving F; to the
second copy.

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

Solution

Apply the same idea as in the conversion NGA = NBA

1.
2.

3.

Take two copies of the pairing [44, 4,].

Redirect transitions of the first copy leaving F; to the
second copy.

Redirect transitions of the second copy leaving F,to the
second copy.

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

Solution

Apply the same idea as in the conversion NGA = NBA

1.
2.

3.

Take two copies of the pairing [44, 4,].

Redirect transitions of the first copy leaving F; to the
second copy.

Redirect transitions of the second copy leaving F,to the
second copy.

Set F to the set F; in the first copy.

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

IntersNBA(A |, Az)

Input: NBAs A = (Q1,Z,61,q01, F1), A2 = (02, %,02,q02, F2)
Output: NBA A N, A> = (Q, X, 6, qo, F) with L,(A; N, A2) = L,(A1) N L,(Az)

Q.6.F <0 8

40 < [qo1.902, 1] 9

W« {lqo1.q02. 11}

while W # 0 do 10
pick [q1, 2, i] from W 11

add [¢1.g2.i] to Q"
ifg € Fandi=1 thenadd [q.q.1] to F" 12

20
21

for all a € X do
for all ¢| € 61(q1,a), 4} € 5(q2,a) do

ifi=1and g ¢ F| then

add (g1, 92, 1], a.[q}]. g5, 1]) to &

if [¢].¢5. 11 ¢ Q' then add [q].45.1] to W
ifi = 1and g, € F| then

add ([¢1,92.1].a.[4}.45. 2D to &

if [¢].¢5.2) ¢ Q' then add [q].45.2] to W
ifi =2and g ¢ F, then

add ([¢1,92,2.a,19}.45. 2D to &

if [¢],45.2] ¢ Q' then add [q],45.2] to W
ifi =2 and ¢, € F; then

add ([q1,92,2),a,14].45, 1)) to &

if (¢, ¢, 11¢ Q' thenadd [q],q}, 1] to W

22 return (Q,X,6,qo, F)

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

Special cases/improvements

* |If all states of at least one of 4, and A, are
accepting, the algorithm for NFAs works.
o Intersection of NBAs A;, 4,, ..., Ay
— Do NOT apply the algorithm for two NBAs
(k — 1) times.
— Proceed instead as in the translation
NGA = NBA: take k copies of [4,, 4,, ..., Ay]
(kn, ..n, statesinstead of 2%n, ..n;)

2 Implementing Boolean Operations for Biichi Automata

Complement

 Main result proved by Biichi: NBAs are closed
under complement.

« Many later improvements in recent years.

* Construction radically different from the one
for NFAs.

AFS 2 Implementing Boolean Operations for Biichi Automata
©je/ewm

AFS
©je/ewm

Problems

» The powerset construction does not work.

 Exchanging final and non-final states in DBAs
also fails.

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

Solution

+ Extend the idea used to determinize co-Buchi
automata with a new component.

* Recall: a NBA accepts a word w iff some path of
dag(w) visits final states infinitely often.

« Goal: given NBA A4, construct NBA A such that:

A rejects w
iff
iff
some run of A visits accepting states of A i.o.
iff
A accepts w

no path of dag(w) visits accepting states of A i.o.

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

Running example

a
0
b

2 Implementing Boolean Operations for Biichi Automata

Rankings

» Mappings that associate to every node of
dag(w) arank (a natural number) such that
— ranks never increase along a path, and
— ranks of accepting nodes are even.

AFS 2 Implementing Boolean Operations for Biichi Automata
©je/ewm

Odd rankings

 Aranking is odd if every infinite path of
dag(w) visits nodes of odd rank i.o.

1 1 0 0 0

AFS 2 Implementing Boolean Operations for Biichi Automata
©je/ewm

AFS
©je/ewm

Prop.: no path of dag(w) visits accepting states of 4 i.o.
iff
dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable
rank.

(€): The stable rank of every path is odd. Since accepting
nodes have even rank, no path visits accepting nodes i.o.
(=): We construct a ranking satisfying the conditions.
Give each accepting node (g, [) rank 2k, where k is the
maximal number of accepting nodes in a path starting at
(q.1).

Give a non-accepting node (g, [) rank 2k + 1, where 2k is
the maximal even rank among its descendants.

2 Implementing Boolean Operations for Biichi Automata

AFS
©je/ewm

e Goal: A rejects w
iff
dag(w) has an odd ranking
iff
some run of A visits accepting states of A i.o.
iff
A accepts w

* |dea: design A so that
— its runs on w are the rankings of dag(w), and
— its acceptings runs on w are the odd rankings of
dag(w) .

2 Implementing Boolean Operations for Biichi Automata

Representing rankings

215 G- 105 ol fol -

AFS 2 Implementing Boolean Operations for Biichi Automata
1111 e

Representing rankings

1= [ol= (1= ol = 2]

AFS 2 Implementing Boolean Operations for Biichi Automata
1111 e

Representing rankings

1= [ol= (1= ol = 2]

AR .
* We can determine if [n;] - [Z,l] may appear in a
2

ranking by just looking at n,, n,, n7,n5 and [: ranks
should not increase.

AFS 2 Implementing Boolean Operations for Biichi Automata
©je/ewm

AFS
©je/ewm

First draft for A

 For a two-state A (more states analogous):
n .
— States: all [nﬂ where accepting states get even rank

— Initial states: all states of the form [nﬂ

. nyya [ng e
— Transitions: all [nz]_) o s.t. ranks don’t increase
2

The runs of the automaton on a word w
correspond to all the rankings of dag(w).

Observe: A is a NBA even if A is a DBA, because
there are many rankings for the same word.

2 Implementing Boolean Operations for Biichi Automata

Problems to solve

» How to choose the accepting states?
— They should be chosen so that a run is accepted iff
its corresponding ranking is odd.
 Potentially infinitely many states (because
rankings can contain arbitrarily large numbers)

AFS 2 Implementing Boolean Operations for Biichi Automata
©je/ewm

