2. Implementing Boolean Operations for Büchi Automata

Intersection of NBAs

• The algorithm for NFAs does not work ...

Apply the same idea as in the conversion NGA \Rightarrow NBA 1. Take two copies of the pairing $[A_1, A_2]$.

Apply the same idea as in the conversion $NGA \Rightarrow NBA$

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.

Apply the same idea as in the conversion $NGA \Rightarrow NBA$

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the second copy.

Apply the same idea as in the conversion $NGA \Rightarrow NBA$

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the second copy.
- 4. Set F to the set F_1 in the first copy.

 $IntersNBA(A_1, A_2)$ **Input:** NBAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** NBA $A_1 \cap_{\omega} A_2 = (Q, \Sigma, \delta, q_0, F)$ with $L_{\omega}(A_1 \cap_{\omega} A_2) = L_{\omega}(A_1) \cap L_{\omega}(A_2)$

1	$Q, \delta, F \leftarrow \emptyset$	8	for all $a \in \Sigma$ do
2	$q_0 \leftarrow [q_{01}, q_{02}, 1]$	9	for all $q'_1 \in \delta_1(q_1, a), q'_2 \in \delta(q_2, a)$ do
3	$W \leftarrow \{ [q_{01}, q_{02}, 1] \}$ while $W \neq \emptyset$ do	10	if $i = 1$ and $q_1 \notin F_1$ then
5	pick $[q_1, q_2, i]$ from W	11	add $([q_1, q_2, 1], a, [q'_1, q'_2, 1])$ to δ
6	add $[q_1, q_2, i]$ to Q'	12	if $[q'_1, q'_2, 1] \notin Q'$ then add $[q'_1, q'_2, 1]$ to W
7	if $q_1 \in F_1$ and $i = 1$ then add $[q_1, q_2, 1]$ to F'		-1 -2
		13	if $i = 1$ and $q_1 \in F_1$ then
		14	add ([$q_1, q_2, 1$], $a, [q'_1, q'_2, 2$]) to δ
		15	if $[q'_1, q'_2, 2] \notin Q'$ then add $[q'_1, q'_2, 2]$ to W
		16	if $i = 2$ and $q_2 \notin F_2$ then
		17	add ([$q_1, q_2, 2$], $a, [q'_1, q'_2, 2]$) to δ
		18	if $[q'_1, q'_2, 2] \notin Q'$ then add $[q'_1, q'_2, 2]$ to W
		19	if $i = 2$ and $q_2 \in F_2$ then
		20	add $([q_1, q_2, 2], a, [q'_1, q'_2, 1])$ to δ
		21	if $[q'_1, q'_2, 1] \notin Q'$ then add $[q'_1, q'_2, 1]$ to W
		22	return $(Q, \Sigma, \delta, q_0, F)$

Special cases/improvements

- If all states of at least one of A₁ and A₂ are accepting, the algorithm for NFAs works.
- Intersection of NBAs A_1, A_2, \ldots, A_k
 - Do NOT apply the algorithm for two NBAs (k 1) times.
 - Proceed instead as in the translation NGA \Rightarrow NBA: take k copies of $[A_1, A_2, ..., A_k]$ $(kn_1 ... n_k \text{ states instead of } 2^k n_1 ... n_k)$

Complement

- Main result proved by Büchi: NBAs are closed under complement.
- Many later improvements in recent years.
- Construction radically different from the one for NFAs.

Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs also fails.

- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of dag(w) visits final states infinitely often.
- Goal: given NBA A, construct NBA \overline{A} such that:

```
\begin{array}{c} A \text{ rejects } w \\ \text{iff} \\ \text{no path of } dag(w) \text{ visits accepting states of } A \text{ i.o.} \\ \text{iff} \\ \text{some run of } \bar{A} \text{ visits accepting states of } \bar{A} \text{ i.o.} \\ \text{iff} \\ \bar{A} \text{ accepts } w \end{array}
```


Running example

Rankings

- Mappings that associate to every node of dag(w) a rank (a natural number) such that
 - ranks never increase along a path, and
 - ranks of accepting nodes are even.

Odd rankings

 A ranking is odd if every infinite path of dag(w) visits nodes of odd rank i.o.

Prop.: no path of dag(w) visits accepting states of A i.o. iff dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable rank.

(←): The stable rank of every path is odd. Since accepting nodes have even rank, no path visits accepting nodes i.o. (→): We construct a ranking satisfying the conditions. Give each accepting node $\langle q, l \rangle$ rank 2k, where k is the maximal number of accepting nodes in a path starting at $\langle q, l \rangle$. Give a non-accepting node $\langle q, l \rangle$ rank 2k + 1, where 2k is

the maximal even rank among its descendants.

- Idea: design \overline{A} so that
 - its runs on w are the rankings of dag(w), and
 - its acceptings runs on w are the odd rankings of dag(w).

Representing rankings

$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \dots$

2 Implementing Boolean Operations for Büchi Automata

Representing rankings

$\begin{bmatrix} 1 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ \bot \end{bmatrix} \dots$

2 Implementing Boolean Operations for Büchi Automata

Representing rankings

$\begin{bmatrix} 1 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ \bot \end{bmatrix} \dots$

• We can determine if $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \xrightarrow{l} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ may appear in a ranking by just looking at n_1, n_2, n'_1, n'_2 and l: ranks should not increase.

First draft for \overline{A}

- For a two-state *A* (more states analogous):
 - States: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$ where accepting states get even rank

- Initial states: all states of the form $\begin{bmatrix} n_1 \\ 1 \end{bmatrix}$

- Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ s.t . ranks don 't increase

- The runs of the automaton on a word w correspond to all the rankings of dag(w).
- Observe: \overline{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

Problems to solve

- How to choose the accepting states?
 - They should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Potentially infinitely many states (because rankings can contain arbitrarily large numbers)

