Chapter II ω -Automata

1. $\omega\text{-}\text{Automata}$ and $\omega\text{-}\text{Languages}$

- ω -automata accept (or reject) words of infinite length
- ω -languages consisting of infinite words appear:
 - in verification, as encodings of non-terminating executions of a program
 - in arithmetic, as encodings of sets of real numbers

ω -Languages

- An ω -word is an infinite sequence of letters.
- The set of all ω -words is denoted by Σ^{ω} .
- An ω-language is a set of ω-words, i.e., a subset of Σ^ω.
- A language L_1 can be concatenated with an ω language L_2 to yield the ω -language L_1L_2 , but two ω -languages cannot be concatenated.
- The ω -iteration of a language $L \subseteq \Sigma^*$, denoted by L^{ω} , is an ω -language.
- Observe: $\phi^{\omega} = \phi$.

ω-Regular Expressions

• ω-regular expressions have syntax

 $s ::= r^{\omega} | rs_1 | s_1 + s_2$

where r is an (ordinary) regular expression.

 The ω-language L_ω(s) of an ω-regular expression s is inductively defined by

 $L_{\omega}(r^{\omega}) = (L(r))^{\omega} L_{\omega}(rs_1) = L(r)L_{\omega}(s_1)$

 $L_{\omega}(s_1 + s_2) = L_{\omega}(s_1) \cup L_{\omega}(s_2)$

• A language is ω -regular if it is the language of some ω -regular expression .

Büchi Automata

• Invented by J.R. Büchi, swiss logician.

Büchi Automata

- Same syntax as DFAs and NFAs, but different acceptance condition.
- A run of a Büchi automaton on an ω-word is an infinite sequence of states and transitions.
- A run is accepting if it visits the set of final states infinitely often.
 - Final states renamed to accepting states.
- A DBA or NBA A accepts an ω -word if it has an accepting run on it; the ω -language $L_{\omega}(A)$ of A is the set of ω -words it accepts.

From ω -Regular Expressions to NBAs

From ω -Regular Expressions to NBAs

From ω -Regular Expressions to NBAs

• Lemma: Let A be a NFA, and let q, q' be states of A. The language $L_q^{q'}$ of words with runs leading from q to q' and visiting q' exactly once is regular.

• Let $r_q^{q'}$ denote a regular expression for $L_q^{q'}$.

• Example:

- Given a NBA A , we look at it as a NFA, and compute regular expressions $r_a^{q'}$.
- We show:

$$L_{\omega}(A) = L(\sum_{q \in F} r_{q_0}^q \left(r_q^q\right)^{\omega})$$

- An ω -word belongs to $L_{\omega}(A)$ iff it is accepted by a run that starts at q_0 and visits some accepting state q infinitely often.

