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Chapter 0 Organizational Matters

@ Lectures:
o 4SWS Tue 08:30-10:00 (MI 00.13.009A)
Fri 10:15-11:45 (Ml 00.13.009A)
Compulsory elective in area Theoretical Computer Science
Module no. IN2041
e Exercises/Tutorial:
e 2SWS Tutorial: Tue 12:00-13:30 (03.11.018)
e Tutor: Moritz Fuchs
e Valuation:
o 4V+270, 8 ECTS points
@ Office hours:
e Fri 12:00-13:00 and by appointment
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http://portal.mytum.de/campus/roomfinder/roomfinder_viewmap?mapid=142&roomid=00.13.009A@5613
http://portal.mytum.de/campus/roomfinder/roomfinder_viewmap?mapid=142&roomid=00.13.009A@5613
https://portal.mytum.de/displayRoomMap?roomid=03.11.018@5611&disable_decoration=yes

@ Tutor sessions:
e Moritz Fuchs, M| 03.09.037 (fuchsmo@in.tum.de)
Office hours: Tue 14:00-16:00
@ Secretariat:
o Mrs. Lissner, M| 03.09.052 (lissner@in.tum.de)
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@ Problem sets and final exam:

problem sets are made available on Tuesdays on the course webpage
must be turned in a week later before class, if you want them marked
are discussed in the tutor session

probably 12 problem sets

@ Exam:

o final exam: Wednesday, February 11, 2015, 11:30-14:30, room M| HS3

o the final exam is closed book, no auxiliary means are permitted except for one sheet
of DIN-A4 paper, handwritten by yourself

o to pass the final exam, it is necessary to obtain at least 40% of the point total
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https://portal.mytum.de/displayRoomMap?roomid=00.06.011@5606

@ Prerequisites:

o Fundamentals of Algorithms and Data Structures (GAD)
e Introduction to Theory of Computer Science (THEO)

@ Supplementary courses:

Logics

Verification

o Webpage:

AFS
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http://www14.in.tum.de/lehre/2014WS/afs/

1. Planned topics for the course

@ Automata on finite words
e Automata classes and conversions

@ Regular expressions, deterministic and nondetermistic automata
e Conversion algorithms

Minimization and reduction

-]
@ Minimizing DFAs
@ Reducing NFAs
e Boolean operations and tests

o Implementation on DFAs
@ Membership, complement, union, intersection, emptiness, universality, inclusion
@ Implementation on NFAs

e Operations on relations
@ Projection, join, post, pre

e Operations on finite universes: decision diagrams
e Automata and logic
o Applications: pattern-matching, verification, Presburger arithmetic
AFS 1 Planned topics for the course
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@ Automata on infinite words
e Automata classes and conversions

o Omega-regular expressions
e Biichi, Streett, Rabin, and Muller automata

e Boolean operations
@ Union and intersection
o Complement
o Checking emptiness
e Applications: verification using temporal logic

m AFS 1 Planned topics for the course
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2. Literature

[

AFS
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John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman:
Introduction to Automata Theory, Languages and Computation,
Addison-Wesley Longman, 3rd edition, 2006

John Martin:

Introduction to Languages and the Theory of Computation,
McGraw-Hill, 2002

Michael Sipser:

Introduction to the Theory of Computation,

International Edition, Thomson Course Technology:
Australia-Canada-Mexico-Singapore-Spain-United Kingdom-United States, 2006

Erich Gradel, Wolfgang Thomas, Thomas Wilke (eds.):
Automata, logics, and infinite games: a guide to current research,
LNCS 2500, Springer-Verlag, 2002




[ Dominique Perrin, Jean-Eric Pin:
Infinite Words: Automata, Semigroups, Logic and Games,
Academic Press, 2004

Also see Javier Esparza’s lecture notes from WS2012/13, onto which this incarnation
of the course is also based (but which contain much more material).

Further relevant research papers will be made available during the course.
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3. Notational conventions

We use standard notation and basic concepts, as detailed e.g., in the introductory
course on

Discrete Structures, INO015

http://wwwmayr.in.tum.de/lehre/2012WS/ds/index.html.en

AFS 3 Notational conventions
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4. Mathematical and Notational Basics

4.1 Sets
Example 1

Al — {25 45 67 8})

Ay ={0,2,4,6,...} ={n € Ng;n even}
Notation:

€A A>x x elementof A

rd A x not element of A

BCA B subset of A

BG A B proper subset of A

0 empty set, as opposed to:

{0} set with empty set as (only) element

AFS 4.1 Sets
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Special Sets:
e N=1{1,2,...}
e Np={0,1,2,...}
@ Z = set of the integers
Q = set of the rational numbers
R = set of the real numbers
C = set of the complex numbers
Z, ={0,1,...,n — 1} residue classes for division by n
[n] ={1,2,...,n}

AFS 4.1 Sets
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Operations on Sets:

AFS

|A| cardinality of the set A

AU B set union

AN B set intersection

A\ B set difference

AN B:=(A\B)U(B\ A) symmetric difference
A x B:={(a,b);a € A, b € B} cartesian product

AW B disjoint union; the elements are distinguished according to their origin

n

J A; union of the sets Ag, A1,..., Ay

i=0

() A; intersection of the sets A; mit i € T

i€l

P(M) :=2M := {N; N C M} power set of the set M

4.1 Sets
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Example 2
Fir M = {a,b,c,d} ist

P(M)

AFS
Mo en

{ 0.{a}, {0}, {c}. {d},
{a7 b}v {av C}a {a7 d}7 {b, 0}7 {b, d}7 {Ca d}a
{a’ b’ C}7 {a’ b’ d}7 {a7 C? d}’ {b7 C? d}’
{a,b,c,d}

4.1 Sets




Theorem 3
Let the cardinality of set M be n, n € N. Then P(M) has 2" elements!

Proof.

Let M ={ajy,...,an}, n € N. To obtain a set L € P(M) (i.e. L C M), we have, for
each i € [n], the (independent) choice to add a; to L or not. This results in 2/l = 27
different possibilities for L. O

Remarks:
@ The above theorem also holds for n = 0, i.e., the empty set M = ().
@ The empty set is a subset of every set.
© P(0) has exactly 0 as element.

AFS 4.1 Sets
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4.2 Relations and Mappings
Let Ay, Ao, ..., A, be sets. A relation R over Aq,..., A, is a subset

RgAlegx...xAn:ilAi
1=

Other notation (infix notation) for (a,b) € R: aRb.

Properties of relations (R C A x A):

AFS
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reflexive: (a,a) € R Va € A

symmetric: (a,b) € R = (b,a) € R Va,be A

asymmetric: (a,b) € R= (ba) ¢ R Va,be A
antisymmetric: [(a,b) € RA (ba) € R = a=b Va,be A
transitive: [(a,b) € RA (b,c) € R| = (a,c) € R Va,b,c€ A
equivalence relation: reflexiv, symmetrisch und transitiv

partial order (aka partially ordered set, poset): reflexive, antisymmetric and transitive

4.2 Relations and Mappings



Example 4

Let (a,b) € R iff alb, i.e., "a divides b", a,b € N\ {1}.

The graphical representation of R without reflexive and transitive arcs is called Hasse
diagram:

8 12 18

20
4//6 9 10/ 15 25
SN

In the diagram, a|b is denoted by an arc b — a.
The relation | is a partial order.

AFS 4.2 Relations and Mappings
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Chapter | Automata Theory, an Algorithmic Approach

1. Automata as Data Structures

@ Data structures allow us to represent sets of objects in a computer.

e Different data structures support different sets of operations (dictionary, stack,

queue, priority queue, . ..):
(or. st operatons | baasrucires |
Dictionary insert, lookup, remove Hash tables, arrays,
search trees
Stack push, pop Linked list, array
Priority queue insert_with_priority, Heap, binomial heap,

extract_highest_priority  Fibonacci heap

Union-find set union, find set Linked lists, disjoint
forests

AFS 1.0 Relations and Mappings
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Automata as Data Structures

In this course we look at automata as a data structure supporting

@ the boolean operations of set theory (union, intersection, complement with
respect to a given universe set)
@ property checks (emptiness, universality, inclusion, equality)

@ operations on relations (projections, joins, pre, post)

AFS

1.0 Relations and Mappings
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1.1 Algorithmic Operations on Sets and Relations

Member(z, X) . returns true if x € X, false otherwise
Complement(X) : returns U\ X

Intersection(X,Y) : returns X NY

Union(X,Y) © returns X UY

Empty(X) : returns true if X = (), false otherwise

Universal(X) . returns true if X = U, false otherwise
Included(X,Y) . returns true if X C Y, false otherwise

Equal(X,Y) : returns true if X =Y, false otherwise

Projection; (R) : returns the set w1 (R) = {z; (3x)[(z,y) € R|}
Projection, (R) . returns the set m(R) = {y; (Fy)[(z,y) € R]}
Join(R, S) . returns Ro S = {(z,2); (Jy)[(z,y) € RA (y,2) € S|}
Post(X, R) . returns postp(X) = {y € U; (Fr € X)[(z,y) € R]}
Pre(X, R) . returns pregp(X) = {y € U; (Fz € X)[(y,z) € R]}

AFS 1.1 Algorithmic Operations on Sets and Relations
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Basic ldea

e Elements of the universe can be encoded as words (strings over some alphabet)
@ Sets can be encoded as languages (sets of words)

@ Automata recognize languages

AFS 1.1 Algorithmic Operations on Sets and Relations
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Example 5

A finite automaton for the strings encoding decimal numbers:

This is a first attempt! What can be corrected /improved?

AFS 1.1 Algorithmic Operations on Sets and Relations
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1.2 Classes of Finite Automata

In the following, we show the definitions of
@ deterministic finite automata (DFA)
@ nondeterministic finite automata (NFA)
@ nondeterministic finite automata with e-transitions (NFA-¢)

@ nondeterministic finite automata with regular-expression-transitions (NFA-reg)

AFS 1.2 Classes of Finite Automata
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1.3 Examples

Example 6
This is a DFA recognizing the multiples of 3, in binary notation:

The states, from left to right, correspond to the residue mod 3 of the binary number
read so far. If this residue is r and the next digit being read is b, then the new residue
is 2r 4+ b mod 3, as reflected by the arrows in the above diagram.

AFS 1.3 Examples
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Example 7

This is a DFA recognizing the nonnegative solutions of 2z —y < 2 in binary (with least
significant digit first):

m AFS 1.3 Examples
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Example 8

This is a DFA recognizing the (initial or intermediate) states of the program leading to
termination. The inputs to the DFA are (in order) the number of the current line in the
program, the value of the (binary) variable z, and the value of the (binary) variable y:

while x = 1 do

if y = 1 then
x«<0
yel-x

th = W N~

end

AFS 1.3 Examples
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Definition 9
Let A =(Q,X,d,qo, F be an automaton. A state ¢ € @) is reachable from ¢ € Q if

a » ¢ on some input aj ...a, € X*. Ais

g = ¢ or if there exists a run ¢’
in normal form if every state is reachable from the initial state.

Unless we say otherwise, we always assume that automata are in normal form!

AFS 1.3 Examples
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2. Conversion algorithms

2.1 NFA to DFA, power set construction

Theorem 10
Let L be the language accepted by some nondeterministic finite automaton. Then we
can effectively construct a DFA M with

L=L(M).

AFS 2.1 NFA to DFA, power set construction
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Proof.
Let N = (Q,%,6,5, F) be an NFA.

Define
@ M = (@554 F)
Q@ Q' :=PQ) (P(Q) = 22 power set of Q)
Q 0'(Q",a) == Uy eqn (¢, a) forall Q" € Q' a € X
Qq:=5
0 I":={Q"CQ; Q"NF #0}

Thus
NFAN: Q X 6§ S F
DFA M 20 % § S F
AFS 2.1 NFA to DFA, power set construction
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Proof (cont'd):

We have: .
weLN) & 6S,w)yNF#£0)

& (gh,w) € F
& we L(M).

Here, § denotes the canonical extension of § to words w € ¥*, and analogously 5. O

The corresponding algorithm for converting an NFA into a DFA is called subset
construction, power set construction, or Myhill construction.

Remark: Of course, the algorithm should also put the NFA it constructs into normal

form.

AFS 2.1 NFA to DFA, power set construction
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Example 11
NFA:

DFA:

AFS
©je/ewm

2.1 NFA to DFA, power set construction




2.2 NFA-e to DFA

Consider the NFA-¢

accepting L(0*1*2*).

AFS
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We perform the following algorithm NFA-ctoNFA:

Input: NFA-¢ A = (Q,%,6,S, F)
Output: NFA B = (@', %, ¢, ¢, F') with L(A) = L(B)
Qy:=5,Q :=5,0:=0, FF:=FnS
=0, W:={(q,a,¢') €6 | g€ S}
while W # () do
pick (q1,a, g2) from W
if o # € then
add ¢ to @Q’; add (q1, @, q2) to &'; if g2 € F then add ¢, to F fi
for all g3 € 0(go,¢) do if (q1,,q3) € & then add (q1, @, q3) to W fi
for all a € ¥,¢3 € 6(¢q2,a) do if (g2,a,q3) € &' then add (q2,a,q3) to W fi
else co a =€ oc
add (q1,a, q2) to ¢”; if g2 € F then add ¢; to F’ fi
for all g€ XU {e},q3 € 6(q2, ) do
if (¢1,0,q3) ¢ 5" U 4" then add (ql,ﬁ,qg) to W fi
fi
od

AFS 2.2 NFA-e to DFA
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Example 12
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2.3 Regular expressions to NFA-¢
For the RE (a*b* + ¢)*d, we intuitively construct the following NFA-e:

AFS 2.3 Regular expressions to NFA-e
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Formally, we have the following rules:

AFS 2.3 Regular expressions to NFA-e
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And finally, removing e-transitions, we obtain:

d

AFS 2.3 Regular expressions to NFA-e
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2.4 NFA-¢ to regular expressions

Preprocessing:

AFS 2.4 NFA-€ to regular expressions
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Processing:

AFS
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2.4 NFA-€ to regular expressions




Postprocessing (if necessary):

AFS
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3. Minimization and Reduction

In this section, we are going to look at the problem of constructing minimal size DFA’s
for a given regular language, or reducing the size of an NFA without changing the
language it accepts.

AFS 3.0 NFA-€ to regular expressions
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Example 13

AFS
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3.1 Residual

Definition 14
Let L C >* be a language, and w € X* a word. The w-residual of L is the language

LY :={ueX*; wuelL}.
A language L' C X* is a residual of L if L' = L" for at least one w € X*.

We note that:

AFS 3.1 Residual
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Relation between residuals and states:
Let A be a DFA and ¢ a state of A.

Definition 15
The state-language L a(q) (or just L(q)) is the language recognized by A with ¢ as
initial state.
We remark:
e State-languages are residuals. For every state q of A, L(q) is a residual of L(A).
@ Residuals are state-languages. For every residual R of L(A), there is a state ¢
such that R = L(q).

AFS 3.1 Residual
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Important consequence:

A regular language has finitely many residuals,
and, equivalently,

languages with infinitely many residuals are not regular.

AFS 3.1 Residual
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Canonical DFA for a regular language:

Definition 16
Let L C >* be a formal language. The canonical DFA for L is the DFA
Cr:=(Qr,%,0r,q0rL, F1,) given by

@ (1 is the set of residuals of L, i.e.,, Qp = {L"; w € ¥*}

@ §(K,a) =K forevery K € Qr anda € X

@ qr =1L, and

o F ={K €Qr;ec€e K}

AFS 3.1 Residual
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Theorem 17
The canoncial DFA for L recognizes L.

Proof.
Let w € ¥*. We show by induction on |w| that w € L iff w € L(Cy).

eclL (w=¢€)

< LeFy (definition of FT)

— qrL€elyL (qor = L)

< €€ L(CL) (gor is the initial state of C7)
aw' € L

= w el (definition of L%

<= w' € L(Cra) (induction hypothesis)

< aw' € L(CL) (5L(L, a) = La)

AFS 3.1 Residual
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Definition 18
Let L C ¥* be a formal language. Define the relation =7 C ¥* x ¥* by

r=py<e VzeXzze L yz e L

Lemma 19
=, Is a right-invariant equivalence relation.

Here right-invariant means:

x=py= xu=g yu for all u.

Proof.
Clear! O

AFS 3.1 Residual
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Theorem 20 (Myhill-Nerode)
Let L. C 3*. Then the following are equivalent:

Q@ L is regular
@ =, has finite index (= number of equivalence classes)

© L is the union of some of the finitely many equivalence classes of =y .

AFS 3.1 Residual
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Proof.
(1)=(2):

Let L = L(A) for some DFA A = (Q, X%, 9, qo, F).

Then we have R R
5((]0755) = 6((]07 y) = T=LY.

Thus there are at most as many equivalence classes as A has states.

AFS
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Proof.
(2)=(3):

Let [z] be the equivalence class of z, y € [z] and x € L.
Then, by the definition of =p, we have:

yeL

AFS
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Proof.
(3)=(1):
Define A" = (Q', X, 0, ¢, F') with

Q = {fa]yze¥} (Q finite!)

g = [d
§([x],a) := [za] VxeX*;a€¥X  (consistent!)
F' = {[z]; x €L}

Then:
L(A') =L

AFS 3.1 Residual
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3.2 Construction of Minimal DFAs

Theorem 21

For a given regular language L, let A be the DFA constructed according to the
Myhill-Nerode theorem. Then A has, among all DFAs for L, a minimal number of
states.

Proof.
Let A= (Q,%,,q0, F) mit L(A) = L. Then

T =41 & S(qo,iﬂ) = S(Qan)

defines an equivalence relation which refines =;..
Thus: |Q| = index(=4) > index(=1) = number of states of the Myhill-Nerode
automaton. O

AFS 3.2 Construction of Minimal DFAs
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Algorithm for Constructing a Minimal DFA
Input: A(Q,X,6,q0,F) DFA (L = L(A))
Output: equivalence relation on Q.

@ ensure that A is in normal form
@ mark all pairs {g;,q;} € Q* with

¢ € Fand g; ¢ Fresp.qi¢ Fandg;€F.

AFS 3.2 Construction of Minimal DFAs
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@ for all unmarked pairs {g;, q;} € Q?, ¢; # g; do
if (3a € ¥)[{d(gi,a),0(gj,a)} is marked] then
mark {g,q;};
for all {q,q'} in {gi,q;}'s list do
mark {q,q¢'} and remove it from list;
do this recursively for all pairs in the list of {¢,¢'}, and so on.
od
else
for all a € ¥ do
if 9(gi,a) # (g, a) then
enter {g;,q;} into the list of {§(g;,a),d(g;,a)}
fi
od
fi
od
© Output: ¢ equivalent to ¢’ < {q,¢'} not marked.

AFS 3.2 Construction of Minimal DFAs
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Theorem 22
The above algorithm constructs a minimal DFA for L(A).

Proof.
Let A" = (Q',X,¢, ¢, F') be the DFA constructed using the equivalence classes
determined by the algorithm.

Obviously L(A) = L(A").
We have: {q,q’'} becomes marked iff
(Fw € £9[6(q,w) € FAd(¢,w) ¢ F or vice versal,

as can be seen by a simple induction on |w].

Thus: The number of states of A’ (viz., |Q’|) equals the index of =. O
AFS 3.2 Construction of Minimal DFAs
©je/ewm



Example 23

automaton A:

AFS
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automaton A’:
L(A') = 0°10*

qo| q1| q2| 43| 44| g5
o| /| /1
Q [/
e | x| x| /I /1 /]/
a3 | X| X ANaN;
Qs | X| X /1)
g5 | x| x| x| x| x|/

3.2 Construction of Minimal DFAs




Theorem 24

Let A= (Q,X%,0,q0, F) be a DFA. Then the running time for the above minimization
algorithm is O(|Q|?|%]).

Proof.

For each a € X, each position in the table is visited only a constant number of
times. 0

AFS 3.2 Construction of Minimal DFAs
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Remark:

The above minimization algorithm
@ starts with a very coarse partition of the state set (), containing =,
@ splits a class of the partition whenever it has to
@ does this as long as any further splitting might be possible

e finally forms the quotient automaton defined by the final partition of @ (which is
a coarsening of =4)

AFS 3.2 Construction of Minimal DFAs
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3.3 Minimizing NFAs

We first observe that a minimal NFA need not be unique (unlike the situation for
DFAs):

AFS 3.3 Minimizing NFAs
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Minimal NFAs are hard to compute:

Theorem 25
The following decision problem is PSPACE-complete: given an NFA A and a number
k > 1, is there an NFA with at most k states which is equivalent to A.

No proof.

AFS 3.3 Minimizing NFAs
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However, quite often we can still compute a partition of the state set ) of a given
NFA which leads to a reduction of the number of states.

Example 26

a,b a,b a,b

AFS 3.3 Minimizing NFAs
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Constructing the quotient automaton, we obtain

a,b

a,b

AFS 3.3 Minimizing NFAs
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Computing a suitable partition

* |dea: use the same algorithm as for DFA, but
with new notions of unstable block and block
splitting.

* We must guarantee:

after termination, states of a block
recognize the same language

or, equivalently
after termination, states recognizing
different languages belong to different
blocks

AFS 3.3 Minimizing NFAs
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It is not hard to see that the construction given above results in an NFA which is
equivalent to the original NFA.

However:
The result might not be minimal:

or

AFS 3.3 Minimizing NFAs
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The result is finer than the language partition:

AFS 3.3 Minimizing NFAs
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4. Implementing operations on sets using finite automata

4.1 Implementation using DFAs

Recall:
Member(z, X) . returns true if x € X, false otherwise
Complement(X) . returns U \ X
Intersection(X,Y) : returns X NY
Union(X,Y) : returns X UY
Empty(X) . returns true if X = (), false otherwise
Universal(X) . returns true if X = U, false otherwise
Included(X,Y) . returns true if X C Y, false otherwise
Equal(X,Y) . returns true if X =Y, false otherwise

AFS 4.1 Implementation using DFAs
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We assume that each object (input, automaton, etc.) is encoded by one word.

We observe:
Membership  : trivial, linear for fixed automaton
uniform word problem: low polynomial
Complement : trivial, swap final and non-final states
linear (or even constant) time
AFS

4.1 Implementation using DFAs
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Also consider these set operations:

AFS
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Intersection(X,Y)

Union(X,Y)
SetDifference(X,Y)
SymmetricSetDifference(X,Y")
Op(X,Y, Z)

4.1 Implementation using DFAs

returns X NY
returns X UY
returns X \ 'Y
returns X AY
returns (X UY)\ Z




The product construction or pairing for DFAs

Two DFAs run synchronously in parallel, an input word is accepted iff both automata
accept it.

Theorem 27
Let My = (Q1,%,01, 51, F1) and My = (Q2, %, 62, s2, ) be two DFAs. Then the
product automaton or pairing M = [My, Ms| of My and My, defined by

M = (Ql X Q272767 (31752)7F1 X F2)

with 6((q1,q2),a) := (61(q1,a),02(q2,a)) for all g1 € Q1,92 € Q2 and a € X3, is a DFA
recognizing L(My) N L(My).

AFS 4.1 Implementation using DFAs
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Proof.

Induction on |w|. We have:

5((s1,82),w) € F1 x Fy
(51(81,11}),(52(32,’[1))) € F| x Fy
Sl(sl,w) e Fi N 82(82,’(0) e Fy
w e L(Ml) Nw &€ L(MQ)

w e L(My) N L(Ms).

w € L(M)

teo 00

Question: Does the pairing construction (for intersection) also work for NFAs?

AFS 4.1 Implementation using DFAs
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Definition 28

The reversal(mirror) of a word w = ay - - ay, is
wti=ap---ay.

The reversal of a language L is

L= {whwelL}.

Theorem 29
If L is a regular language, so is L.

AFS 4.1 Implementation using DFAs
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Proof.
Let M = (Q,3,0,qo, F) be a DFA with L = L(M). We construct an e-NFA

N =(QW{q},%,0,q),{qo}) as follows:
@ we reverse all state transitions, i.e., 6(q,a) = p iff ¢ € §'(p);
@ we create the new start state g, of NV, with e-transitions to all f € F;

@ ¢o becomes the (only) final state of N.

Following the state transitions of M on some arbitrary input w € ¥* backwards, we

easily see that
L(N)=L~%.

AFS 4.1 Implementation using DFAs
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Observation:

@ The product automaton/pairing of two DFAs with n; resp. ng states has (in
normal form) O(n; - ng) states.

@ Hence, for DFAs with nq resp. no states and an alphabet X with k letters, the
operations union, intersection, etc. can be carried out in O(k - nj - ng) time.

AFS 4.1 Implementation using DFAs
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Language tests

Let A, Ay, and Az be DFAs, with L = L(A), L1 = L(A1), and Ly = L(As2) the
languages recognized by them, respectively. Note that we assume that all these
automata are in normal form!

Then we have

@ Emptiness: L is empty iff A has no final states.
@ Universality: L = X* iff A has only final states.
@ Inclusion: Ly C Lo iff Ly \ Ly = 0.
e Equality: Ly = Lo iff Ly A Ly = 0.

AFS 4.1 Implementation using DFAs
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4.2 Implementation using NFAs

Recall:
Member(z, X) . returns true if x € X, false otherwise
Complement(X) © returns U\ X
Intersection(X,Y) : returns XNY
Union(X,Y) : returns X UY
Empty(X) . returns true if X = (), false otherwise
Universal(X) : returns true if X = U, false otherwise
Included(X,Y) : returns true if X C Y, false otherwise
Equal(X,Y) . returns true if X =Y, false otherwise

AFS 4.2 Implementation using NFAs
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Complement:

@ Swapping final and non-final states does not work.
@ Solution: convert to DFA and then swap states.

@ Problem: exponential blow-up of size of automaton!
Hence try to avoid this whenever possible!

@ However, in the worst case there is no better way: There are NFAs with n states
such that any minimal NFA for their complement has ©(2") states!

AFS 4.2 Implementation using NFAs
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Union and intersection:

The product/pairing construction still works for union and intersection, with the same
complexity, but (of course(!)) not for set difference or other non-monotonic operations.

There is a better construction for union (see a few slides down), but not for
intersection.
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Observation:
Clearly, this type of pairing construction does not work for set difference:

SetDiff(A, A) should always produce an NFA recognizing the empty language, but the
construction does not work this way!

AFS 4.2 Implementation using NFAs
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Emptiness and universality

We observe that an NFA A (in normal form) recognizes the the empty language (i.e.,
L(A) = 0) iff every state of A is non-final.

However, we should also note that the statement
“An NFA is universal iff every state of it is final.”
does not hold in general.

In fact, we have

Corollary 30
Emptiness (for DFAs and NFAs) is decidable in linear time.

And ...

AFS 4.2 Implementation using NFAs
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Theorem 31
The universality problem for NFAs is PSPACE-complete.

Proof.

We first show that the universality problem is in PSPACE. In fact, we show that it is in
NPSPACE and apply Savitch's theorem.

Given an NFA A = (Q, %, 6, qo, F') with n = |Q)] states, our algorithm guesses an input
for B = NFAtoDFA(A) leading from {go} to a non-final state of B, i.e., a set of states
of A which are all non-final. If such a run exists, then there is one of length < 2™. The
algorithm does not store the whole run, only the current state of B, and hence it only
needs space linear in n.

AFS 4.2 Implementation using NFAs
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Proof (cont'd):

We prove PSPACE-hardness by reduction from the acceptance problem for linearly
bounded automata (LBAs). An LBA N is a nondeterministic Turing machine that
always halts and only uses the part of the tape containing the input. A configuration of
N on an input of length & is encoded as a word of length k. A run of NV on an input
can be encoded as a word coFcy ... #c,, Where the ¢;'s are the encodings of the

configurations.
Let X be the alphabet used to encode the run of the machine. Given an input x, N
accepts if there exists a word w of X* satisfying the following properties:

(a) w has the form co#cy . .. #cp, where the ¢;'s are configurations;
(b)
(c) ¢y is an accepting configuration; and
(d)

co is the initial configuration;

for every 0 < ¢ < n —1: ¢;41 is a successor configuration of ¢; according to the
transition relation of V.

AFS 4.2 Implementation using NFAs
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Proof (cont'd):
The reduction shows how to construct in polynomial time, given an LBA NN and an

input z, an NFA A(N, x) accepting all the words of ¥* that do not satisfy at least one
of the conditions (a)-(d) above. We then have

@ If N accepts z, then there is a word w(N, z) encoding an accepting run of N on
x, and so L(A(N,z)) C ¥*\ {w(N,x)}.

o If N does not accept x, then no word encodes an accepting run of N on z, and so
L(A(N,x)) = X*.

Thus, N accepts z if and only if L(A(N,z)) # ¥*, and we are done. O

AFS 4.2 Implementation using NFAs
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Remarks:

@ Complement and then check for emptiness
— exponential complexity
@ Possible improvements:

— check for emptiness while complementing: on-the-fly-check
— test for subsumption
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A Subsumption Test

We observe that, while doing the conversion to and the universality check for a DFA, it
might not be necessary to store all states.

Definition 32
Let A be a NFA, and let B = NFAtoDFA(A). A state @' of B is minimal if no other
state Q" of B satisfies Q" C Q.

Lemma 33

Let A be an NFA, and let B = NFAtoDFA(A). A is universal iff every minimal state of
B is final.

AFS 4.2 Implementation using NFAs
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Proof.

Since A and B recognize the same language, A is universal iff B is universal. So A is
universal iff every state of B is final. But a state of B is final iff it contains some final
state of A, and so every state of B is final iff every minimal state of B is final. 0

AFS 4.2 Implementation using NFAs

©je/ewm




AFS
1111 e

4.2 Implementation using NFAs




AFS
1111 e

4.2 Implementation using NFAs




Can this approach be correct?

After all, removing a non-minimal state, we might be preventing the addition of other
minimal states in the future!?

AFS 4.2 Implementation using NFAs
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Lemma 34
Let A= (Q,%,0,q, F) be an NFA, and let B = NFAtoDFA(A). After termination of
UnivNFA(A), the set Q contains all minimal states of B.

AFS 4.2 Implementation using NFAs
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Proof.
Assume the contrary.
Then B has a shortest path @1 — Q2 --- Q-1 — @, such that, after termination,

o Ql S Q: Qn ¢ Q

@ (), is minimal
Since the path is shortest, Q2 ¢ Q, and so when UnivNFA processes @)1, it does not
add Q2. This can only be because UnivNFA already added some Q) C Q2.

AFS 4.2 Implementation using NFAs
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Proof (cont'd):

But then B has a path Q5 — Q5 - - -
Q! = Qn and is minimal.

/
n—1

Thus, the path Q) — -+ — @/, satisfies

— @), with Q), C Q. Since @, is minimal,

° Q)€ Q, and
@ Q) is minimal.

This contradicts our assumption that Q1 — --- — (), is as short as possible. ]
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Inclusion and equality

Theorem 35
The inclusion problem for NFAs is PSPACE-complete.

Proof.

If, given tw o NFAs A; and As, we want to test whether L(A;) C L(Aj3) or,
equivalently, L(A;) N L(A3) = 0. The negation of the latter can easily be checked
(using polynomial space) by guessing a word w (of length at most exponential in the

size of A; and Ag) such that w is recognized by A; but not As.

PSPACE-hardness on the other hand follows since an NFA A is universal iff
L(A) = X%, i.e., the universality problem reduces to the inclusion problem.
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Further optimization: subsumption test

Definition 36
Let Ay, Ay be NFAs, and let By = NFAtoDFA(A3). A state [q1, Q2] of [Ay, Ba] is
minimal if no other state [¢}, Q%] satisfies ¢f = ¢1 and Q% C Qo.

Lemma 37
LL(A;) C L(As9) iff every minimal state [q1, Q2] of [A1, Bo] satisfying q1 € Fy also
satisfies Qo N Fy # ().

Proof.

Since Ay and Bj recognize the same language, L(A1) C L(As) iff L(A1) N L(A3) =10
iff L(A1) N L(Bg) = 0 iff [Ay, Bs] has a state [¢1, Q2] such that ¢; € F; and

Q2 N Fy = (). But [A1, B| has some state satisfying this condition iff it has some
minimal state satisfying it. O
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Algorithm InclNFA(A;, As):
Input: NFAs A = (Q1,%,01,q01, F1), Az = (Q2,%, 52, qo2, [2)
Output: true if L(A;) C L(Ag), false otherwise
Q=10
W= {[go1, {q02}] }
while W # () do
pick [q1,Q2] from W
if 1 € F1 and Q2 N Fy, = () then return false fi
add [q1,Q2] to Q
for all a € X,¢] € 01(q1,a) do
QY = 62(Q2, a)
if WUQ contains no [¢f,Q5] s.t. ¢/ =¢| and Qf C Q) then
add [q;,@5] to W
fi
return true
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Important special case:

If Ay is an NFA, but Ay (already) is a DFA, then

@ complementing Az is now trivial

@ we obtain a running time O(n? - ny)

Remark: To check for equality, we just check inclusion in both directions. To obtain
PSPACE-hardness for equality, just observe the universality problem as above.

AFS 4.2 Implementation using NFAs
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5. Implementing operations on relations using finite automata

We discuss how to implement operations on relations over a (possibly infinite) universe
U. Even though we will encode the elements of U as words, when implementing
relations it is convenient to think of U as an abstract universe, and not as the set >*
of words over some alphabet ¥. The reason is that for some operations we encode an
element of X not by one word, but by many, actually by infinitely many. In the case of
operations on sets this is not necessary, and one can safely identify the object and its
encoding as word.

AFS 5 Implementing operations on relations using finite automata
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We shall consider a number of operations on relations, some of which are closely
related to operations on sets, which we have discussed above. For other types of

operations:

Recall:
Projection; (R) : returns the set m(R) = {z; (3x)[(x,y) € R]}
Projectiony(R) : returns the set mo(R) = {y; (Jy)[(x,y) € R|}
Join(R, S) : returns Ro S = {(z,2); (Fy)[(z,y) € RA (y,2) € S|}
Post(X, R) . returns postp(X) ={y € U; (3r € X)[(x,y) € R]}
Pre(X, R) . returns prep(X) ={y € U; (3zr € X)[(y,x) € R]}
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Definition 38

Assume an encoding of the universe U over ¥* has been fixed. Let A be an NFA.
@ A accepts x € U if it accepts all encodings of .
o A rejects x € U if it accepts no encoding of z.
@ A recognizes a set X C U if

L(A) = {w € ¥*; w encodes some element of X} .

A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Notice that if A recognizes X C U then, as one would expect, A accepts every r € X
and rejects every x ¢ X. Hence, with this definition, it may be the case that an NFA
neither accepts nor rejects a given x. An NFA is well-formed if it recognizes some set
of objects, and ill-formed otherwise.

AFS
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Definition 39
A transducer over ¥ is an NFA over the alphabet 3 x 3.
Transducers are also called Mealy machines.

According to this definition, a transducer accepts sequences of pairs of letters, but it is
convenient to look at it as a machine accepting pairs of words:

AFS 5 Implementing operations on relations using finite automata
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Definition 40

Let T be a transducer over X. Given words wy; = aqas . ..a, and wy = b1bsy...b,, we
say that 7" accepts the pair (wy,ws) if it accepts the word

(a1,b1) ... (an,by) € (X x X)*.

Definition 41
Let T be a transducer.

@ T accepts a pair (x,y) € X x X if it accepts all encodings of (z,vy).
e T rejects a pair (x,y) € X x X if it accepts no encoding of (x,y).
@ T recognizes a relation R C X x X if

L(T) = {(wyz, wy) € (¥ x X)*; (wz,w,) encodes some pair of R} .

A relation is regular if it is recognized by some transducer.

AFS 5 Implementing operations on relations using finite automata
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Examples of regular relations on numbers (/sbf encoding):

— the identity relation { (n,n); n € Np}
— the relation “is double of” { (n,2n); n € No}

Example 42
The Collatz function is the function f : N — N defined as follows:

3n+1 ifnisodd
n/2 if n is even

sy ={

AFS 5 Implementing operations on relations using finite automata
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We next show a transducer that recognizes the relation {(n, f(n)); n € N} with Isbf
encoding and with ¥ = {0,1}. The elements of ¥ x ¥ are represented as column
vectors with two components. The transducer accepts for instance the pair (7,22)
because it accepts the pairs (111000%,011010%), that is, it accepts

] GI1 6] G (BT

for every k > 0.
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Determinism

¢ Atransducer is deterministic if it is a DFA.

* Observe: if Z has size n, then a state of a deterministic
transducer with alphabet X x I has n? outgoing
transitions.

* Warning! There is a different definition of
determinism:

a
— Aletter [b] is interpreted as "output b on input a"

— Deterministic transducer: only one move (and so
only one output) for each input.
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Implementing the operations
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Correctness proof

* Assume: transducer T recognizes a set of pairs

* Prove: the projection automaton A recognizes a set, and this
set is the projection onto the first component of the set
of pairs recognized by T.

a) A accepts either all encodings or no encoding of an object.
Assume A accepts at least one encoding w of an object x.
We prove it accepts all.

If A acceptsw, then T accepts ‘:l:, for some w'. By

*

assumption T accepts MV:,, [z] ,and so A accepts w #”.

Moreover, w = s, #* forsome k > 0, and so, by padding
closure, A also accepts s, #/ for every j < k.

b) A only accepts words that are encodings of objects.
Follows easily from the fact that T satisfies the same
property for pairs of objects.
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c)

Correctness proof

If A accepts an object x , then there is an object y such that T
accepts (x,y) .

x accepted by A
= s, acceptedby A ( parta)

= i’]‘ accepted by T for some w

By assumption, T only accepts pairs of words encoding some
pair of objects. So w encodes some object y. By assumption,
T then accepts all encodings of (x,y).So T accepts (x,y) .
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Correctness proof

d) If a pair of objects (x, y) is accepted by T, then x is
accepted by A.
(x,y) acceptedby T

Wy
= w, accepted by T for some
encodings wy ,w,, of x and y
= w, acceptedby A

= x acceptedby A (part a))
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Remember:
The projection automaton of a

deterministic transducer may be
nondeterministic.
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Instead of:

qo1
qo2

we now use

)=

aj

b

]

)

AFS
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aj
Cl
qgor — {411
Cl
by
qo2 — {412

for some letter c1

o = Y
Lbﬂ
Yor 7 T2

fov fowme leH—er G 1
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6. Some pattern matching

Given
— a word w (the text) of length n, and

— a regular expression p (the pattern) of length m,
determine the smallest number &’ such that there is a subword wy, ;r of w with

Wi k! S L(p) .

Remark: We here minimize the right end of the matching subword. To make a match
unique, one could require e.g., that its length is minimal (or maximal).
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NFA-based solution

PatternMatchingNFA(t, p)
Input: text7 = a; ...a, € L*, pattern p € £*

Output: the first occurrence of p in 7, or L if no such occurrence exists.

1 A « RegtoNFA(X*p)

2 S «{qo}

3 forallk=0ton—-1do

4 if S N F # 0 then return k

5 S « (S, ar+1)

6 return L

Line 1 takes 0(m?) time, output has 0 (m) states

Loop is executed at most n times
One iteration takes O(s?) time, where s is the number of

states of A
Since s = 0(m), the total runtime is 0(m3 + nm?) , and

O(mm?)form <n.

6 Some pattern matching




DFA-based solution

PatternMatchingDFA(t, p)
Input: texts = a; ...a, € L*, pattern p
Output: the first occurrence of p in #, or L if no such occurrence exists.
1 A « NFAtoDFA(RegtoNFA(Z" p))
2 q<qo
3 forallk=0ton—1do
4 if ¢ € F then return k
5 q < (q, ak+1)
6 return L

Line 1 takes 2°(™ time

e Loopisexecuted at most n times
« One iteration takes constant time
Total runtime is 0(n) + 20(m)
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The word case

The pattern p is a word of length m

Naive algorithm: move a window of size m
along the word one letter at a time, and
compare with p after each step. Runtime:
0O(nm)

We give an algorithm with O (n + m) runtime
for any alphabet of size 0 < |Z| <n.

First we explore in detail the shape of the DFA
forXp.
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Obvious NFA for 2*p and p = nano

z

Result of applying NFAtoDFA
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Intuition

« Transitions of the ,,spine* correspond to hits: the next letter
is the one that,,makes progress“ towards nano

 Other transitions correspond to misses, i.e., ,wrong letters*
and ,throw the automaton back"
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Observations

e Foreverystate i = 0,1,...,4 of the NFA there is exactly one
state S of the DFA such that i is the largest state of S.

 For every state S of the DFA, with the exception of S = {0}, the
result of removing the largest state is again a state of the DFA.
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Observations

e Foreverystate i = 0,1,...,4 of the NFA there is exactly one
state S of the DFA such that i is the largest state of S.

 For every state S of the DFA, with the exception of S = {0}, the
result of removing the largest state is again a state of the DFA.

* Do these properties hold for every pattern p?
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Heads and tails, hits and misses

Head of S, denoted h(S) : largest state of S
Tail of S, denoted t(S) : rest of the state
Example: ({3,1,0}) = 3, t({3,1,0}) = {1,0}

Given a state S, the letter leading to the next state in
the ,,spine” is the (unique) hit letter for S

All other letters are miss letters for S

Example: hit for {3,1,0} is 0, whereas n or a are
misses
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» Fund. Prop: Let Sy be the k-th state picked from
the worklist during the execution of NFAtoDFA(4,,).
(1) h(Sk) =k,
(2) If k >0, then t(S,) = S; forsome l < k

Proof Idea:

* (1) and (2) hold for S, = {0}.

* For S, we look at §(Sy, a) for each a, where § transition
relation of 4,, .

* Byih.wehave S, ={k}U S, forsome [ <k

» We distinguish two cases: a is a hit for S, and a is a miss
for Sy .
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e S, ={k}uUS, forsome [ <k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k+1} U §(S;,a)
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e S, ={k}uUS, forsome [ <k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k} U S5

Hit: a al
{k+1} U §(S;,a)

_—

Added to the worklist
earlier, and so some S/

m AFS 6 Some pattern matching
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e S, ={k}uUS, forsome [ <k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k} u S
Hit: al al
{k+1} U §(S;,a)
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e S, ={k}uUS, forsome [ <k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k} u S
Miss: al al
@ U 6(51, Cl)
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S, ={k}us, forsome [ <k

8(Sk,a) =6(k,a) U 6(S5;,a)

{k} u 5§
Miss: al al
@ U 6(51, Cl)
Sy
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Consequences

Prop: The result of applying NFAtoDFA(A,,), where A,,
is the obvious NFA for Z*p , yields a minimal DFA with
m states and |2 |m transitions.

Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA
yields a O(n + |Z|m) algorithm.

— Good enough for constant alphabet

— Not good enough for |Z| = 0(n)
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Lazy DFAS

» We introduce a new data structure: lazy DFAs.
We construct a lazy DFA for ~*p with m states
and 2m transitions.

* Lazy DFAs: automata that read the input from
a tape by means of a reading head that can
move one cell to the right or stay put

» DFA=Lazy DFA whose head never stays put

6 Some pattern matching
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Lazy DFA for Z*p

By the fundamental property, the DFA B, for 2*p

behaves from state S), as follows:

— If ais a hit, then 65(Sk, @) = Si41 ., 1., the DFA
moves to the next state in the spine.

— If ais a miss, then 85 (S, a) = 65(t(Sk),a), i.e., the
DFA moves to the same state it would move to if it
were in state t(Sy).

When a is a miss for Sy, the lazy automaton moves to
state t(S)) without advancing the head. In other words,
it ,,delegates” doing the move to t(Sy)

So the lazyDFA behaves the same for all misses.

6 Some pattern matching
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» Formally,
— 8¢0(Sk, @) = (Spsq, R) if ais a hit
—50(Si, @) = (t(S,), N) if a is a miss

 So the lazy DFA has m + 1 states and 2m
transitions, and can be constructed in 0(m)
space.

6 Some pattern matching
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 Running the lazy DFA on the text takes O(n + m)

time:

— For every text letter we have a sequence of ,stay put*
steps followed by a , right* step. Call it a macrostep.

— Let §;, be the state after the i-th macrostep. The
number of steps of the i-th macrostep is at most
]l 1 ]l

So the total number of steps is at most

Z(h 1= Ji+*2)=jo —jn+t2n <m+2n

6 Some pattern matching
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Computing Miss

For the O(m + n) bound it remains to show that the lazy
DFA can be constructed in O(m) time.

Let Miss(k) be the head of the state reached from S, by
amiss.

It is easy to compute each of Miss(0),..., Miss(m) in
0(m) time, leading to a O(n + m?) time algorithm.
Already good enough for almost all purposes. But, can
we compute all of Miss(0), ..., Miss(m) together in
time O0(m)? Looks impossible!

Itisn‘t though ...

6 Some pattern matching
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niss(S;) = So ifi=0ori=1
miss\o) - = Sp(miss(Si-y). b)) ifi>1
S i+l ifb=bj+| (hit)
op(Sj.b) = So if b # bjyy (miss) and j =0
Op(miss(S j),b) if b # bj,y (miss)and j # 0
Miss(p) DeltaB(j, b)
,m}, letter b.

Input: number j € {0,...
Output: head of the state d5(S j, b).

1 whileb # bj,; and j # 0do j « Miss(j)
2 ifb = bj, then return j + 1
3 else return 0

Input: word pattern p = by -+ by,.
Output: heads of targets of miss transitions.

1 Miss(0) « 0; Miss(1) « 0

2 fori<2,....,mdo
3 Miss(i) « DeltaB(Miss(i — 1), b;)

6 Some pattern matching
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« All calls to DeltaB lead together
to 0(m) iterations of the while
loop.

* The call
DeltaB(Miss(i — 1),b_i)
executes at most
Miss(i — 1) — (Miss(i) — 1)
iterations.

6 Some pattern matching




 Total number of iterations:

E(Miss(i ~ 1) — Miss(i) + 1)
=2
< Miss(1) — Miss(m) + m
<m

AFS 6 Some pattern matching
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7. Finite Universes

@ When the universe is finite (e.g., the interval [0,232 — 1] ), all objects can be
encoded by words of the same length.
@ A language L has length n > 0 if
— L=0andn=0, or
— L # () and every word of L has length n.
@ L is a fixed-length language if it has length n for some n > 0.
@ Observe:

— Fixed-length languages contain finitely many words.
— 0 and {e} are the only two languages of length 0.

AFS 7 Finite Universes
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Fixed-length complement

In principle ill-defined, because the complement of a
fixed-length language is not fixed-length.

We implement the fixed-length complement instead.

Can't we just swap the states for the empty language and
the language containing the empty word?

Yes and no ...

7 Finite Universes
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8. Verification

@ We use languages to describe the implementation and specification of a system.

@ We reduce the verification problem to language inclusion between implementation
and specification.

AFS 8 Verification
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1 while x = 1 do
2 if y = 1 then
3 x<0

4 yel-x

5 end

» Configuration: triple [l,n,,n,] where
« [is the current value of the program counter, and
* ny,n, are the current values of x, y

Examples: [0,1,1],[5,0,1]

« Initial configuration: configuration with { =1

« Potential execution: finite or infinite sequence of configurations
Examples: [0,1,1][4,1,0]

[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]

AFS 8 Verification
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1 while x = 1 do
2 if y = 1 then
3 xe«0
4 yel-x
5

end

« Execution: potential execution starting at an initial configuration,
and where configurations are followed by their ,,legal
successors* according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
[1,1,0][2,1,0][4,1,0][1,1,0]

 Full execution: execution that cannot be extended (either infinite
or ending at a configuration without successors)

AFS 8 Verification
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Verification as a language problem

Implementation: set E of executions

Specification:

— subset P of the potential executions that satisfy a
property , or

— subset V' of the potential executions that violate a
property

Implementation satisfies specification if :

- ECP ,or

- EnV =20

If E and P regular: inclusion checkable with automata

If E and V regular: disjointness checkable with automata

8 Verification




AFS
©je/ewm

Verification as a language problem

Implementation: set E of executions

Specification:

— subset P of the potential executions that satisfy a
property , or

— subset V' of the potential executions that violate a
property

Implementation satisfies specification if :

- ECP ,or

- EnV =20

If E and P regular: inclusion checkable with automata

If E and V regular: disjointness checkable with automata

How often is the case that E, P,V are regular?

8 Verification




System NFA

while x = | do

if y = 1 then
x <0
ye—1-x

R Y Sy

B W -

LLQ)— Q1D 410

AFS 8 Verification
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1,1,0

System NFA

8 Verification
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System NFA
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Property NFA

* |s there a full execution such that
— initially y = 1,
— finallyy =0, and
— yneverincreases?
» Set of potential executions for this property:
[1,x, ][I, x,1]" [I, x,0]" [5,x,0]
» Automaton for this set:

8 Verification
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Intersection of the system and
property NFAs

« Automaton is empty, and so no execution satisfies the
property

8 Verification




Another property

* |s the assignment y < x — 1 redundant?

* Potential executions that use the assignment:
[1,x,v]*([4,x,0][1,x,1] + [4,x,1][1,x,0]) [, x, y]*

 Therefore: assignment redundant iff none of

these potential executions is a real execution
of the program.

AFS 8 Verification
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lnCz

A
4567

0123

Networks of automata

lnCz

8 Verification




o Tuple A = (A, .., A,)of NFAs.

» Each NFA has its own alphabet X; of actions

 Alphabets usually not disjoint!

» A; participatesinactiona ifa € Z; .

» Aconfiguration is a tuple {q4, ..., q5) Of states, one for
each automaton of the network.

* (q1,...,qn) €nables a if every participantin aisina
state from which an a-transition is possible.

» Enabled actions can occur, and their occurrence
simultaneously changes the states of their
participants. Non-participants stay idle and don‘t
change their states.

AFS 8 Verification
©je/ewm



AFS
©je/ewm

Configuration
graph of the
network

8 Verification
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AsyncProduct(Ay, ..., A,)
Input: a network of automata A = Ay,...A,, where

Ay = (lezl‘dlyqol» Ql)s LA = (Qn- DI R qon, Qn)
Output: the asynchronous product A ®---®A, = (Q,X,6, qo, F)
1 Q6F«0
2 qo < lqo1s--->qonl
3 W e{lqo1s-..,qonl}
4 while W # 0 do
5 pick [q1,...,q,] from W
6 add [q,...,q.] to Q
7 add [q,..., qn) to F
8 forallaeZ,U...UZ, do
9 foralli < [l..n] do

10 if a € Z; then Q] « 0;(g;, a) else Q! = {g;}

11 forall [¢|,...,q,] € Q| X...X Q) do

12 if[q],....q,] ¢ Qthenadd [q],...,q,] toW
13 add ([q1.....qu).a.1q},....q,]) tos

14 return (Q, X, 6, qo, F)

AFS 8 Verification
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Concurrent programs as networks of automata:

Lamport's 1-bit algorithm (JACM86)

Shared variables: b[1], ..., b[n] € {0,1}, initially O
Processi € {1, ...,n}

repeat forever

noncritical section
T. b[i]:=1
forje{d,...,i-1}
if b[j]=1 then bl[i]:=0
await =b[j]
gotoT
forj e {i+1, ...,N} await =b][j]
critical section
b[i]:=0

8 Verification




Network for the two-process case

m AFS 8 Verification
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Asynchronous product
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Checking properties of the algorithm

e Deadlock freedom: every configuration has at least one
successor.

» Mutual exclusion: no configuration of the form
[bo, b1, Co, €1] is reachable

» Bounded overtaking (for process 0): after process 0 signals
interest in accessing the critical section, process 1 can enter
the critical section at most one before process 0 enters.

— Let NC;, T;, C; be the configurations in which process i is
non-critical, trying, or critical
— Set of potential executions violating the property:

T (E\Co)" €1 (E\Co)" NCy (Z\Co)" €1 &7

8 Verification




CheckViol(Ay, ...,A,, V)

Input: anetwork (Aj,...A,), where A; = (Q;, X, 6, qoi» Qi):
anNFAV = (Qy, X U...UZ,,dv, qov F\).

Output: true if A} ® --- ® A, ® V is nonempty, false otherwise.

1 Q< 0;90 < [qo15---qon qov]
2 W {qo}
3 while W # 0 do

4 pick [q1,...,qn, q] from W
5 add [q1,...,qn,ql to Q
6 forallae X, U...UZX, do
7 foralli € [1..n] do
8 if a € I; then Q] « 6i(g;, a) else Q! = {q;}
9 Q' < ovig,a)
10 forall [¢,...,q,,q4'] € Q] x...X Q) x Q" do
11 if AL, ¢/ € F; and ¢ € F, then return true
12 if [¢},....q,,9'] ¢ Q thenadd [g},...,q,,q'] to
w

13 return false

AFS 8 Verification
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The state-explosion problem

* In sequential programs, the number of
reachable configurations grows exponentially
in the number of variables.

* Proposition: The following problem is PSPACE-
complete.

— Given: a boolean program 7 (program with only
boolean variables), and a NFA A, recognizing a
set of potential executions

— Decide: Is E; n L(Ay) empty?

AFS 8 Verification
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The state-explosion problem

* In concurrent programs, the number of
reachable configurations also grows
exponentially in the number of components.

* Proposition: The following problem is PSPACE-
complete.

— Given: a network of automata A = (44, ..., Ay)
and a NFA Ay, recognizing a set of potential
executions of A

—Decide: ISL(A; @ R4, QAy) =07?

8 Verification




AFS
©je/ewm

Symbolic exploration

A technique to palliate the state-explosion
problem

Configurations can be encoded as words.

The set of reachable configurations of a
program can be encoded as a language.

We use automata to compactly store the set
of reachable configurations.

8 Verification
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while x = | do
if y = 1 then
x 0
ye1-x
end

Flowgraphs

8 Verification
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Step relations

» Let[,!' be two control points of a flowgraph.
 The step relation S; ;» contains all pairs

( [l, xOlyO]l [llix(l)’y(,)] )
of configurations such that :

if at point [ the current values of x, y are x, o,

then the program can take a step,
after which the new control point is I, and the new
values of x,y are xg,yg.

8 Verification




Saq = { ([4,x0, 0], [1,%0,1 = x0] ) | x0,¥0 €{0,1} }

* The global step relation S is the union of the step
relations S, » for all pairs [,1" of control points.

AFS 8 Verification
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Computing reachable configurations

« Start with the set of initial configurations.
* Iteratively: add the set of successors of the

current set of configurations until a fixed point
is reached.

AFS 8 Verification
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P1:POUPOSt(P0,S)
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P1:POUPOSt(P0,S)
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P1:POUPOSt(P0,S)
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P1:POUPOSt(P0,S)

8 Verification




Reach(I, R)
Input: set / of initial configurations; relation R
Output: set of configurations reachable form /

1 OldP <« 0; P « I

2 while P # OldP do

3 OldP <« P

4 P < Union(P, Post(P, S))
5 return P

m AFS 8 Verification
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Example: Transducer for the global step relation

while x = 1 do
if y = 1 then
xe«0
ye1l-x
end

8 Verification




Example: DFAs generated by Reach
* Initial configurations
. 1 . 0,1 . 0,1 .

 Configurations reachable in at most 1 step

AFS 8 Verification
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Example: DFAs generated by Reach

 Configurations reachable in at most 2 steps

AFS 8 Verification
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Example: DFAs generated by Reach

 Configurations reachable in at most 3 steps

AFS 8 Verification
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Variable orders

 Consider the set Y of tuples [xy, ..., xo;] Of booleans
such that

X1 = X410 X2 = Xpt2) 0 X = X2k
o Atuple [xq, ..., x5;] can be encoded by the word
X1 Xy ... Xop—1X25 DUt also by the word x; x4 1 ... X Xop.

» For k = 3, the encodings of Y are then, respectively
{000000,001001,010010,011011, 100100, 101101, 110110, 111111}
{000000, 000011,001100,001111, 110000, 110011, 111100, 111111}

» The minimal DFAs for these languages have very
different sizes!

AFS 8 Verification
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Another example: Lamport’s algorithm

(vo, V1,50, 51) (vo, V1,50, 51)
encoded by encoded by
S0S1VoV1 15150V

AFS 8 Verification
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Larger sets can yield smaller DFAS!

nei, qy ¢, q1

fo, Co

« DFAs after adding the configuration (c,, ¢;, 1,1) to the set

AFS 8 Verification
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» When encoding configurations, good variable
orders can lead to much smaller automata.
 Unfortunately, the problem of finding an

optimal encoding for a language represented
by a DFA is NP-complete.

8 Verification




AFS
©je/ewm
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Logics on words

* Regular expressions give operational descriptions
of regular languages.

 Often the natural description of a language is
declarative:
— even number of a's and even number of b’s vs.

(aa + bb + (ab + ba)(aa + bb)*(ba + ab))*

— words not containing ‘hello’

 Goal: find a declarative language able to express
all the regular languages, and only the regular
languages.

9 Automata and Monadic Second-Order Logic




Logics on words

* Idea: use a logic that has an interpretation on
words
» Aformula expresses a property that each word
may satisfy or not, like
— the word contains only a's
— the word has even length
— between every occurrence of an a and a b there is
an occurrence of a ¢
 Every formula (indirectly) defines a language: the
language of all the words over the given fixed
alphabet that satisfy it.

AFS 9 Automata and Monadic Second-Order Logic
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First-order logic on words

« Atomic formulas: for each letter a we
introduce the formula Q, (x), with intuitive
meaning: the letter at position x is an a.

AFS 9 Automata and Monadic Second-Order Logic
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First-order logic on words: Syntax

» Formulas constructed out of atomic formulas

by means of standard “logic machinery”:

— Alphabet £ = {a, b, ... } and position variables
V={xy ..}

—Qu(x)isaformulaforeverya e Zandx € V.

—x < yisaformulaforeveryx,y € V

—If @, ¢, , @, are formulas then so are —¢ and
P11V @,

—If p isaformulathensois 3x ¢ foreveryx € V

9 Automata and Monadic Second-Order Logic




Abbreviations

P1 A2 == (=1 V)
Y1 = @2 =91 Ve
Vx ¢ :=-dx-gp

first(x) :=

last(x)
y=x+1
y=x+2
y=x+(k+1) =

AFS 9 Automata and Monadic Second-Order Logic
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Examples (without semantics yet)

o “The last letter is a b and before it there are only a’s.”

Ax Op(x) A Vx(last(x) = Op(x) A —last(x) = Qu(x))
e “Every a is immediately followed by a b.”

Yx(Qa(x) = Iy(y =x+1AQp())

e “Every a is immediately followed by a b, unless it is the last letter.”

Vx(Qa(x) = Vy(y =x+1 - 0(y)

o “Between every a and every later b there is a ¢.”

YaVy (Qa(x) A Qp(0) Ax <y = Jz(x <z Az <y A Qc(2)

AFS 9 Automata and Monadic Second-Order Logic
©je/ewm



AFS
©je/ewm

First-order logic on words: Semantics

» Formulas are interpreted on pairs (w, ;) called
interpretations, where
—wisaword, and
— /J assigns positions to the free variables of the

formula (and maybe to others too—who cares)

* |t does not make sense to say a formula is true or
false: it can only be true or false for a given
interpretation.

* If the formula has no free variables (if itis a
sentence), then for each word it is either true or
false.

9 Automata and Monadic Second-Order Logic




 Satisfaction relation:

(w,J)
(w,J)
w,J)
w,J)
(w,J)

AFS
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E Qux) iff wlll=a

Eox<y iff 9 <)

E - iff wIHEe

E elver iff WwhHE@orwIEe

E dxe iff |wl=1andsomeic(l,..., [wl} satisfies (w,[i/x]) E ¢

More logic jargon:

— A formulais valid if it is true for all its
interpretations

— A formulais satisfiable if is is true for at least
one of its interpretations

9 Automata and Monadic Second-Order Logic



The empty word ...

e ...isasusual a pain in the eh, neck.

* |t satisfies all universally quantified formulas,
and no existentially quantified formula.

AFS 9 Automata and Monadic Second-Order Logic
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Can we only express regular languages?
Can we express all regular languages?

» The language L(¢) of a sentence ¢ is the set of
words that satisfy ¢.

» Alanguage L is expressible in first-order logic or FO-
definable if some sentence ¢ satisfies L(¢) = L.

» Proposition: a language over a one-letter alphabet is
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

» Consequence: we can only express regular
languages, but not all, not even the language of
words of even length.

9 Automata and Monadic Second-Order Logic
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Proof sketch

1. If L is finite, then it is FO-definable

2. If L is co-finite, then it is FO-definable.

9 Automata and Monadic Second-Order Logic




Proof sketch

3. If L is FO-definable (over a one-letter
alphabet), then it is finite or co-finite.
1) We define a new logic QF (quantifier-free
fragment)
2) We show that a language is QF-definable iff it is
finite or co-finite

3) We show that a language is QF-definable iff it FO-
definable.

AFS 9 Automata and Monadic Second-Order Logic
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1) The logic QF

o x <k x>k
x<y+k x>y+k
k < last k > last

are formulas for every variable x, y and every

k=0.
 If f, f, are formulas, then so are f; Vv f, and
finfz
AFS 9 Automata and Monadic Second-Order Logic
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2) L is QF-definable iff it is finite or co-finite

(=) Let f be a sentence of QF.

Then fis an and-or combination of formulas

k < last and k > last.
L(k <last) ={k+ 1,k + 2,... }is co-finite (we
identify words and numbers)
L(k > last) ={0,1, ..., k}is finite
L(f1V f2) = L(f1) U L(fz) andsoif L(f) and L(g)
finite or co-finite the L is finite or co-finite.

L(fi A f2) = L(f1) nL(f2) and soif L(f) and L(g)
finite or co-finite the L is finite or co-finite.

AFS 9 Automata and Monadic Second-Order Logic
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2) L is QF-definable iff it is finite or co-finite

(<) If L = {kq,...,k,}isinite, then
(ky —1<last A last<k;+1)V--V
(k, —1l<last A last <k, +1)
expresses L.

If L is co-finite, then its complement is finite, and so expressed
by some formula. We show that for every f some formula

neg(f) expresses L(f)

e neglk <last)=(k—1<last A last <k +1)
V last <k

* neg(f1V f2) = neg(f1) Aneg(f2)

* neg(fi A f2) = neg(f1) v neg(f2)

9 Automata and Monadic Second-Order Logic
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3) Every first-order formula ¢ has an equivalent
QF-formula QF (¢)

QF(x<y)=x<y+0

QF (=) = neg(QF (¢))

QF (1 V ¢2) = QF (91) V QF (¢2)

QF (@1 A @2) = QF (91) A QF (¢3)

QF (3x ¢) = QF(3x QF (¢))

— If QF () disjunction, apply 3Ix (@1 V..V ¢,) =
IXYV ... VIX@,

— If QF (¢) conjunction (or atomic formula), see example in the
next slide.
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e Consider the formula
Ix x<y+3 A

z<x+4 A
z<y+2 A
y<x+1
* The equivalent QF-formula is
z<y+8 AN y<y+5 AN z<y+2

9 Automata and Monadic Second-Order Logic
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Monadic second-order logic

* First-order variables: interpreted on positions
» Monadic second-order variables: interpreted
on sets of positions.

— Diadic second-order variables: interpreted on
relations over positions

— Monadic third-order variables: interpreted on sets
of sets of positions

— New atomic formulas: x € X

9 Automata and Monadic Second-Order Logic




Expressing ,,even length®

* Express
There is a set Xof positions such that
— X contains exactly the even positions, and
— the last position belongs to X.
* Express
X contains exactly the even positions
as

A positionis in X iff itis second position or the
second successor of another position of X

AFS 9 Automata and Monadic Second-Order Logic
©je/ewm



Syntax and semantics of MSO

e Newset {X,Y,Z, ... } of second-order variables
* Newsyntax: x € X and 3x ¢

* New semantics:

— Interpretations now also assign sets of positions to
the free second-order variables.

— Satisfaction defined as expected.

AFS 9 Automata and Monadic Second-Order Logic
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Expressing c*(ab)*d*

» EXpress:
There is a block X of consecutive positions such that
— before X there are only c's;
— after X there are only b's;
—a'sand b's alternate in X;
— the first letter in X is an a, and the lastisa b.

» Then we can take the formula
3X (Cons(X) A Boc(X) AAod(X) AAIt(X)
AFa(X)ALb(X))

AFS 9 Automata and Monadic Second-Order Logic
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» X is a block of consecutive positions

» Before X there are only c's

e In X a's and b's alternate

9 Automata and Monadic Second-Order Logic
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Every regular language is expressible in
MSO logic

 Goal: given an arbitrary regular language L,
construct an MSO sentence ¢ such having

L =L(y).
* We use: if L is regular, then there isa DFA A
recognizing L.

* Idea: construct a formula expressing
the run of 4 on this word is accepting

9 Automata and Monadic Second-Order Logic
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Fix a regular language L.

Fix a DFA A with states q,, ..., q,, recognizing L.
Fixawordw = aqa, ... a,,.

Let £, be the set of positions i such that after

reading a,a, ... a; the automaton A is in state q.

We have:
A accepts w iff m € P, for some final state q.

9 Automata and Monadic Second-Order Logic




» Assume we can construct a formula
Visits(Xy, ..., X5)
which is true for (w, 7) iff
I(Xo) = Py, ... 9(Xp) = Py,
» Then (w, 7) satisfies the formula
Yy =X ... X, Visits(Xp, ... X,) A Ix [last(x) A \/ x€X;

qgieF

iff w has a last letter and w € L, and we easily
get a formula expressing L .

AFS 9 Automata and Monadic Second-Order Logic
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To construct Visits(X,, ..., X, ) we observe that
the sets P, are the unique sets satisfying
a) 1€ Pgsq,a, I-€. afterreading the first letter the
DFAisin state 6(qq, a;).

b) The sets P, build a partition of the set of positions,
i.e., the DFA is always in exactly one state.

c) Ifie P and8(q,a;41) =q' theni+1€ Py, ie,
the sets ,,match“ §.
We give formulas for a) , b), and c)

9 Automata and Monadic Second-Order Logic




» Formula for a)

Init(Xo, ..., X,) = Ix (ﬁrst(x) A [\/(Qa(x) AXE Xi,,)]]

aex

» Formula for b)

Oeermmmmennnas Orremennnenaas =]

n

Partition(Xo,...,X,) = Vx | \/xeXi A /\ (xeXi>xgX)
i=0 i,j=0
[

AFS 9 Automata and Monadic Second-Order Logic
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» Formula for c)
Respect(Xo, ..., X,) =

Vavy | y=x+1—> \/ (x€X; A Qu(x) Ay € X))

acx
i,j€{0,...,n}
6(gi,a) = q;

* Together:
Visits(Xo, . .. X,) := Init(Xy, ..., X,) A
Partition(Xy, ..., X,) A
Respect(Xy, ..., X,)

AFS 9 Automata and Monadic Second-Order Logic
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Every language expressible in MSO
logic is regular

Recall: an interpretation of a formula is a pair
(w, 9) consisting of a word w and
assignments J to the free first and second
order variables (and perhaps to others).

x—- 1 x> 2

y—3 y 1
aab,XH{2’3} ba’Xr—)(Z)

Y - (1,2} Y - {1}

9 Automata and Monadic Second-Order Logic




» We encode interpretations as words.

x— 1 x> 2
y 3 y 1

aab,XH{z,S} ba’XHQ)
Y - {1,2} Y - {1}
a a b b a

X 1 00 X 0 1

y 0 0 1 y 1 0

X 0 1 1 X 0 0

Y 1 1 0 Y 1 0

AFS 9 Automata and Monadic Second-Order Logic
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» Given a formula with n free variables, we
encode an interpretation (w, 7) as a word
enc(w, 7) over the alphabet X > {0,1}".

 The language of the formula ¢ , denoted by
L(¢), is given by

L(p)={enc(w,D| (w,7) = ¢}

» We prove by induction on the structure of ¢
that L(¢) is regular (and explicitely construct
an automaton for it).

9 Automata and Monadic Second-Order Logic
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Case ¢ = Qq(x)

e ¢ = Q,(x). Then free(p) = x, and the interpretations of ¢ are encoded as words over
2 % {0, 1}. The language L(yp) is given by

! k>0, 1
L(p) = [7‘] [ﬁ* a; € Tand b; € {0, l}foreveryie (1,...,k}, and
l e 176 | b; = 1 for exactly one index i € {1, k} such thata; = a J
and is recognized by
al |p al [b
R

8,
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Case p =x <y

e ¢ = x < y. Then free(p) = {x,y}, and the interpretations of ¢ are encoded as words
over X x {0, 1}%. The language L(y) is given by

k>0,
a ar|| a; € Zand b;,c; €{0,1} foreveryi e {l,...,k},
L(p) =4|b, by|| b; =1 for exactly one index i € {1,...,k},
c ck|| c;j=1forexactly one index j € {1,...,k}, and
i<j
and is recognized by
al|b al [b allb
oflo ol,[o offo
B

- oS

AFS 9 Automata and Monadic Second-Order Logic
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Case p =x€X

e ¢ = x € X. Then free(¢) = {x, X}, and interpretations are encoded as words over
¥ x {0, 1)>. The language L(y) is given by

k>0,
Lig) = Z‘ Z" a;€Zand by, c; € {0, 1} forevery i € {1,... .k},
$)= cl ck b—lforexactlyoneindexie[l ., k}, and
1 k

forevery i€ {l,...,k}, 1fb—1thenc,—1
and is recognized by

a
0],
0

a

S o
c oS
— o2

b
.0
1

oo
=)
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Case ¢ = Y

» Then free(¢) = free(y) . By i.h. L(¥) is regular.

* L(g)isequal to L(y) minus the words that do not encode any
implementation (,,the garbage®).

 Equivalently, L(¢) is equal to the intersection of L(y) and the
encodings of all interpretations of .

» We show that the set of these encodings is regular.

— Condition for encoding: Let x be a free first-oder variable of
1 . The projection of an encoding onto x must belong to
0710* (because it represents one position).

— So we just need an automaton for the words satisfying this
condition for every free first-order variable.

AFS 9 Automata and Monadic Second-Order Logic
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Example: free(p) = {x, y}
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Case ¢ = @1V @,

* Then free(p) = free(p,) U free(¢,).Byi.h. L(¢;)
and L(¢-,) are regular.

o If free(p,) = free(p;) then L(¢) = L(¢1) U L(¢)
and so L(¢) is regular.
o If free(p,) # free(p,) then we extend L(¢,) toa
language L; encoding all interpretations of
free(p,) U free(p,) whose projection onto
free(¢,) belongs to L(¢,). Similarly we extend
L(¢p,) to L,. We have
— L, and L, are regular.
— L(p) =L, UL,.
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Example: ¢ = Q,(x) vV Q_b(y)

* L, contains the encodings of all

interpretations (w, {x +— ny,y — n,}) such
that the encoding of (w, {x — n,}) belongs
to L(Q4(x)).

e Automata for L(Q,(x)) and L;:

S o =
— o<
S o~
=

o

a a al |a
o[.|o].]c o|.[o].|o.]0
of | o] [1 1
al |a
Co o G Co ] O
O—O O——0O



Cases @ = dx ¢y and = 3IX ¢

* Then free(p)= free(Y)\{x} or free(p)=
free()\ {X}

e Byi.h. L(¥) is regular.

» L(¢) is the result of projecting L(y) onto the
components for free(y)\ {x} or

free()\ {X}.

AFS 9 Automata and Monadic Second-Order Logic
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Example: ¢ = Q,(x)

» Automata for Q,(x) and 3Ix Q,(x)

AFS 9 Automata and Monadic Second-Order Logic
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The mega-example

We compute an automaton for

dx (last(x) A Qp(x)) A Vx (—last(x) — Q.(x))
First we rewrite ¢ into

dx (last(x) A Qp(x)) A —dx (—last(x) A =Q,(x))
In the next slides we

1. compute a DFA for last(x)

2. compute DFAs for 3x (last(x) A Q,(x)) and
=3x (=last(x) A —=Qq4(x))

3. compute a DFA for the complete formula.
We denote the DFA for a formula ¥ by [¢].

AFS 9 Automata and Monadic Second-Order Logic
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[last(x)]
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[Fx (last(x) AQy (x))]

—_—

o1

=
—_

—_—

o 0

—_

a,b
Ceop O
H O + ﬁ_.@
[04(0)] [x (last(x) A Qy())]
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[—3x (—-last(x) A —-Qa(x))]
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[3x (last(x) AQp (x))
A =3x (=last(x) A =Qq(x))]

a,b a
é % b C ‘O b .O

[3x (last(x) A Qp(x))] [—3x (=last(x) A = Qq(x))]

a

B0

[Tx (ast(x) A Op(x)) A —=3x (mlast(x) A =Q,(x))]

AFS 9 Automata and Monadic Second-Order Logic
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10. Presburger Arithmetic

Presburger Arithmetic is the first-order theory over the natural numbers (Ng) with
addition (+) as relation. It is convenient to also allow the constants 0 and 1 and the
relations < and <, with the canonical interpretation.

PA is named in honor of Mojzesz Presburger (1904-19437):

@ born in Warsaw
e died in Holocaust (19437)
@ student of Alfred Tarski

@ MA-thesis: About the completeness of a certain system of
integer arithmetic in which addition is the only operation
(1930)

Again we are interested in which arithmetical problems can be solved using automata!

AFS 10 Presburger Arithmetic
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http://en.wikipedia.org/wiki/Moj%C5%BCesz_Presburger

Syntax of PA

- Symbols: variables XY, Z...
constants 0, 1
arithmetic symbols +, =<
logical symbols or, not, Exists
parenthesis

- Terms: a variable is a term
0 and 1 are terms
if t and u are terms, then t+u is aterm

- Atomic formulas: t=<u, where t and u are terms

AFS 10 Presburger Arithmetic
©je/ewm



AFS
©je/ewm

Syntax of PA

- Formulas:

e cvery atomic formula is a formula;

o if ¢, ¢, are formulas, then so are -, ¢ V ¢;, and Jxgp;.

- Free and bound variables:
- a variable is bound if it is in the scope of an existential
quantifier, otherwise it is free.

- A formula without free variables is called a sentence

10 Presburger Arithmetic
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Abbreviations

Conjunction, implication, bi-implication, universal quantification

n = 1+1+...+1 =t = T2
R —
n times = = 1T AT
nX = X+X+...+x t<t = St A=@=Y)
n times t>tf = t<it

10 Presburger Arithmetic




Semantics (intuition)

- The semantics of a sentence is "true" or "false"

- The semantics of a formula with free variables (x_1, ..., x_k)
is the set containing all tuples (n_1, ..., n_k) of natural
numbers that "satisfy the formula"

AFS 10 Presburger Arithmetic
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Semantics (more formally)

- An interpretation of a formula F is any function that assigns
a natural number to every variable appearing in f (and
perhaps also to others).

Given an interpretation I, a variable x, and a number n, we
denote by I[n/x] the interpretation that assigns to x the
number n, and to all other variables the same value as |.

AFS 10 Presburger Arithmetic
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Semantics (more formally)

- We define when an interpretation satisfies a formula F.

JEt<u iff  J(r) < I(u)

JE —¢ iff J ¢

JE@i Ve iff JEg@ordE ¢

JEIxge iff  there exists n > 0 such that I[n/x] F ¢

- Lemma: Let F be a formula, and let 11, 12 be two
interpretations of F. If 11 and 12 assign the same
values to all FREE variables of F, then either they
both satisfy F or none of them satisfies F.

- Consequence: if F is a.sentence, either all interpretations
satisfy F, or none of them satisfies F.

AFS 10 Presburger Arithmetic
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Semantics (more formally)

- We say a sentence is true if it is satisfied by all
interpretations.

- We say a sentence is false if it is not satisfied by any
interpretation.

- A model or solution of a formula F is the projection of any
interpretation that satisfies F onto the free variables of F.

- The set of models or solutions of F is also called the solution
space of F, and denoted by Sol(F).
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Language of a formula

we encode natural numbers as strings over {0, 1} using the least-significant-bit-first
encoding Isbf. If we have free variables xi, ..., xx, the elements of the solution space
are encoded as a word over {0, 1}*. For instance, the word

X L{|0][1]]O
X2 Off{1]{O]}1
X3 0][{0][0][O

is an encoding of the solution (3, 10,0). The language of a formula is then defined to
be

L(p) = {Isbf(s) | s € Sol(g)}

AFS 10 Presburger Arithmetic
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Constructing an NFA for the
solution space

Given a formula F, we construct an NFA Aut(F) such that
L(Aut(F)) = L(F).

We can take:
- Aut( not F)

-Aut( F or G)
- Aut( Exists x F)

CompNFA( Aut(F) )
UnionNFA( Aut(F), Aut(G) )
Projection_x( Aut (F) )

So it remains to define Aut(F) for an atomic formula F.
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All atomic formulas equivalent (same solutions) to
atomic formulas of the form

o= aix1+...+ax, <b= a-x<b

where the a_i and b can be arbitrary integers (possibly
negative).

Consider a candidate solution

£ () oo é,m
f 10 ( 1 $im
(2m
(nO (nm
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For every j < m, let ¢/ € IN" denote the tuple of numbers encoded by the prefix
{o - ..¢j-1. For instance, for the encoding {y{1¢> of the tuple (0,4,7, 3) given by

o 4 & Qo &
0 [0] (O] [O 0 [0] [O
4 0f 10 1 we get 0 0
7 1 1 1 3 1 1
3 1 1] [0 3 1 1

and so ¢ = (0,0, 3, 3). Define further ¢® = (0,0, 0, 0); i.e., before reading anything all
components of the tuple are 0.

We construct a DFA for the solution space of ¢. The idea is that after reading a
prefix {p ... -1 the automaton should be in the state

{%(b—a-c")J (10.1)

AFS 10 Presburger Arithmetic
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Initially we have ¢® = (0, ...,0), and so the initial state is the number Eﬂ;(b—a-c") =
b. For the transitions, assume that before and after reading the letter £; the automaton
is in the states ¢ and ¢’, respectively. Then we have

q=l% (b—a~cj)J and q’={# (b—a-cj”)J

From the definition of c*j we get:

= + 20

Inserting this in the expression for ¢’, and comparing with g, we obtain the following
relation between ¢ and ¢':

1
Cl' = {E(q—a’{j)J

So for every state ¢ and every letter ¢ € {0, 1}" we take (¢, () = %(q —-a-{).
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PAtoDFA(y)
Input: PA formulag =a-x<b
Output: DFA A = (Q, %, 6, qo, F') such that L(A) = L(g)

qo < Sp
W« {Sb}
while W # 0 do
pick s; from W
add s; to Q
if £ > 0 then add s; to F/
for all £ € {0, 1}" do

) 1

je b(k—a-g)J

if s; ¢ O then add s; to W
add (53, {,5))to 6

O 0 NN R W N =

—
o
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Figure 10.1: DFAs for the formula 2x —y < 2.



@ BLEHaH)
{8

Figure 10.2: DFAs for the formula x + y > 4.
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Lemma 103 Letrgo =a-x < bands = ZL la;l. All states s; added to the worklist
during the execution of PAtoDFA(yp) satisfy

—lbl— s < j<|bl+s.

Proof: The property holds for s, the first state added to the worklist. We show that if
all the states added to the worklist so far satisfy the property, then so does the next one.

Let s; be this next state. Then there exists a state sy in the worklist and £ € {0, 1}" such
that j = L%(k —a - {)]. Since by assumption s; satisfies the property we have

—1bl=s<k<|bl+s

o — b+ 5 —a-
{—” ; a{Jsjs[—”Hza{J (10.2)

and so
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Now we observe

~lb] - 2s {—Ibl—s—a-gJ
-pl-s £ —— < |—m—m——=
7 2
Boocat) o mon o,

which together with 10.2 yields
—bl-s<j<|bl+s

and we are done. O
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dzx=4z A Iwy=4w A 2x—-y<2 A x+y=>4

bl el

DFA for the formula zx =4z A Jwy = 4w.
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Interlude

11. Semilinear Sets

See, e.g.,

[1 Kracht, M.:
A new proof of a theorem by Ginsburg and Spanier.
Manuscript, Dept. of Linguistics, UCLA (2002)

@ Fischer, Michael J. and Michael O. Rabin:
Super-exponential complexity of Presburger Arithmetic.
SIAM-AMS Proceedings, vol. 7, AMS (1974)
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Chapter 1l w-Automata

1. w-Automata and w-Languages

@ w-automata accept (or reject) words of infinite length
@ w-languages consisting of infinite words appear:

— in verification, as encodings of non-terminating executions of a program
— in arithmetic, as encodings of sets of real numbers

AFS 1 w-Automata and w-Languages
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w-Languages

An w-word is an infinite sequence of letters.
The set of all w-words is denoted by ~®.

An w-language is a set of w-words, i.e., a subset
of 2%,

Alanguage L, can be concatenated with an w-
language L to yield the w-language L, L., but
two w-languages cannot be concatenated.

The w-iteration of a language L < X*, denoted
by L?, is an w-language.

Observe: ¢¢ = @.

1 w-Automata and w-Languages




w-Regular Expressions

* w-regular expressions have syntax
su=r? rs;|s;+s,
where r is an (ordinary) regular expression.

* The w-language L, (s) of an w-regular expression s is
inductively defined by

Ly (r®) = (L))" Ly (rsy) = L(r)Ly(sy)

Ley(s1+53) = Ly (s1) U Ly(sz)

» Alanguage is w-regular if it is the language of some
w-regular expression .

AFS 1 w-Automata and w-Languages
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Blichi Automata

* Invented by J.R. Buchi, swiss logician.

1 w-Automata and w-Languages




Blichi Automata

e Same syntax as DFAs and NFAs, but different
acceptance condition.

» Arun of a Biichi automaton on an w-word is an
infinite sequence of states and transitions.

* Arunisaccepting if it visits the set of final states
infinitely often.
— Final states renamed to accepting states.

* ADBA or NBA A accepts an w-word if it has an
accepting run on it; the w-language L, (A)of A is
the set of w-words it accepts.

AFS 1 w-Automata and w-Languages
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Some examples

1 w-Automata and w-Languages




From w-Regular Expressions to NBAs

NFA for r NBA for r

AFS 1 w-Automata and w-Languages
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From w-Regular Expressions to NBAs

NBA for r- s

NBA for s

1 w-Automata and w-Languages
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From w-Regular Expressions to NBAs

NBA for s; + s>

NBA for s,

1 w-Automata and w-Languages




From NBAs to w-Regular Expressions

e Lemma: Let A be a NFA, and let q, g be states

of A . The language L?I of words with runs
leading from g to q' and visiting g’ exactly
once is regular.

! !
* Let rqq denote a regular expression for Lg .

AFS 1 w-Automata and w-Languages
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From NBAs to w-Regular Expressions

* Example:

r(') = (a@a+b+co)(b+c)

ré = (a+b+c)b

r} = (b+o)y

r% = b+(@+c)a+b+c)b

1 w-Automata and w-Languages
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From NBAs to w-Regular Expressions

e Given a NBA A, we look at it as a NFA, and

!

compute regular expressions rqq .
e We show:
w
Lo@ =1( ) 7, (")

qEF
— An w-word belongs to L, (A) iff it is accepted by a
run that starts at g, and visits some accepting
state q infinitely often.

1 w-Automata and w-Languages




From NBAs to w-Regular Expressions

b,c . (@+b+cyb+c)
(a+b+c)b

b+ c)*

b+ (a+c)a+b+c)b

Il

a,b,c

Ly(A) =19 (D) + 1§ (r)®

AFS 1 w-Automata and w-Languages
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DBAs are less expressive than NBAs

e Prop.: The w-language (a + b)*b® is not recognized by
any DBA.
 Proof: By contradiction. Assume some DBA recognizes

(a+Db)"'b®.
— DBA accepts b -> DFA accepts b
DBA accepts b™a b - DFA accepts b™a b™

DBA accepts b™a b™ ab® -> DFA accepts b™™a b™ta b™2 etc.

— By determinism, the DBA accepts b™a b™a b™ ...a b™ ...,
which does not belong to (a + b)*b®.

1 w-Automata and w-Languages




Generalized Blchi Automata

» Same power as Buchi automata, but more
adequate for some constructions.

* Several sets of accepting states.

* Arunis accepting if it visits each set of accepting
states infinitely often. b ;

& @
b

F={{qhir}}

AFS 1 w-Automata and w-Languages
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From NGAs to NBAs

* Important fact:

All the sets F;, ..., F,, are visited infinitely often
is equivalent to
F; is eventually visited

and
every visit to F; is eventually followed by a visit to Fjgy;

AFS 1 w-Automata and w-Languages
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From NGAs to NBAs

NGA with 3 sets of
accepting states

Equivalent NBA
with 3 copies of
the NGA

AFS 1 w-Automata and w-Languages
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NGAtoNBA(A)
Input: NGA A = (Q.%, 0.6, 9), where F = {Fy,.... F,)
Output: NBA A’ = (Q'.%.6".q). F')

1
2
3
4
5
6
7
8
9

Q.0 F < 0; g5 < [q0,0]
W« {[q0, 0]}
while W # 0 do
pick [¢, i] from W
add [¢,i] to Q’
ifge Fpandi =0 thenadd [g,i] to F’
foralla € X, ¢ € 6(q,a) do
if ¢ ¢ F; then
if[¢/,i] ¢ Q' thenadd [¢’,i] to W
add ([¢,i],a,[q’,i]) to &’
else /* g e F; */
if[¢,i® 1] ¢ Q' thenadd [¢',i® 1] toW
add ([g,i],a,[q’,i® 1]) to &’
return (0", %, ¢, ¢, F’)

1 w-Automata and w-Languages




F=1{{ghir}}
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DGAs have the same expressive power as DBASs,
and so are not equivalent to NGAs.

* Question: Are there other classes of omega-
automata with
— the same expressive power as NBAs or NGAs, and

— with equivalent deterministic and
nondeterministic versions?

We are only willing to change the acceptance
condition!

AFS 1 w-Automata and w-Languages
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Co-Bulichi automata

» A nondeterministic co-Buchi automaton (NCA)
is syntactically identical to a NBA, but a runis
accepting iff it only visits accepting states
finitely often.

1 w-Automata and w-Languages
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Which are the languages?

b a a,b b
g B8

b

b,c a

1 w-Automata and w-Languages



Determinizing co-Blichi automata

» Given a NCA A we construct a DCA B such that
L(A) = L(B).
» We proceed in three steps:

— We assign to every w-word w a directed acyclic
graph dag(w) that “contains™ all runs of A on w.

— We prove that w is accepted by A iff dag(w) is
infinite but contains only finitely many breakpoints.

— We construct a DCA B that accepts an w-word w iff
dag(w) is infinite and contains finitely many
breakpoints.

AFS 1 w-Automata and w-Languages
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* Running example:

a

a

1 w-Automata and w-Languages




dag(aba®)

dag((ab)®)
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» A accepts w iff some infinite path of dag(w)
only visits accepting states finitely often
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Levels of a dag

||||||\g\||||||£y/||||||\<z||||||\%1||||||

Level 0 Level 1 Level 2 Level 3 Level 4

AFS 1 w-Automata and w-Languages
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Breakpoints of a dag

» We defined inductively the set of levels that
are breakpoints:
— Level O is always a breakpoint

— If level [ is a breakpoint, then the next level [" such
that every path between [ and [’ visits an
accepting state is also a breakpoint.

AFS 1 w-Automata and w-Languages
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Only two breakpoints
— \"EPL@
a

D)
b ~a \

e
&

e 3
o

Infinitely many breakpoints

(e

=4
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e Lemma: A accepts w iff dag(w) is infinite and has
only finitely many breakpoints.

Proof;

If A accepts w, then A has at least one run on w, and
so dag(w) is infinite. Moreover, the run visits
accepting states only finitely often, and so after it
stops visiting accepting states there are no further
breakpoints.

If dag (w) isinfinite, then it has an infinite path, and
so A has at least one run on w. Since dag(w) has
finitely many breakpoints, then every infinite path
visits accepting states only finitely often.
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Constructing the DCA

If we could tell if a level is a breakpoint by looking
at it, we could take the set of breakpoints as
states of the DCA.

However, we also need some information about
its “history™".

Solution: add that information to the level!
States: pairs [P, O] where:

— P is the set of states of a level, and

— 0 C P is the set of states that owe a visit to the
accepting states". Formally: g € O if g is the

1 w-Automata and w-Languages
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Constructing the DCA

o States: pairs [P, O] where:
— P is the set of states of a level, and
— 0 C P isthe set of states ““that owe a visit to the
accepting states*.
» Formally: g € O if g is the endpoint of a path
starting at the last breakpoint that has not yet
visited any accepting state.
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Constructing the DCA

* States: pairs [P, O]

* Initial state: pair [{q,}, 0] if qo € F, and
[{g0}, {q0}] otherwise.

e Transitions: 6([P,Q],a) = [P',0'] where
P'=6(P,a),and
~0'=6(0,a)\F ifoO#0
(automaton updates set of owing states)
—0'=8P,a)\Fifo=0
(automaton starts search for next breakpoint)

* Accepting states: pairs [P, @] (no owing states)

AFS 1 w-Automata and w-Languages
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NCAtoDCA(A)
Input: NCA A = (Q,%,6,q0, F) _
Output: DCA B = (0, %, 4, §o, F) with L,(A) = B

1
2
3
4
5
6
7
8
9

10

0.5, F « 0;if g € F then o < [qo, 0] else Go < [{qo}, {(go}]
We{qo}
while W # 0 do
pick [P, O] from W:; add [P, O] to O
if P=0thenadd [P,0O] to F
foralla € X do
P’ =6(P,a)
if O # 0 then O’ « 6(0,a)\ F else O’ « 6(P,a)\ F
add ([P, 0],a,[P',0']) to &
if [P/,0’'] ¢ O thenadd [P',Q'] to W

Complexity: at most 3" states
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Running example
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Recall ...

* Question: Are there other classes of omega-
automata with
— the same expressive power as NBAs or NGAs, and

— with equivalent deterministic and
nondeterministic versions?

Are co-Buchi automata a positive answer?

AFS 1 w-Automata and w-Languages
©je/ewm



AFS
©je/ewm

Unfortunately no ...

e Lemma: No DCA recognizes the language (b*a)®.

Proof: Assume the contrary. Then the same
automaton seen as a DBA recognizes the
complement (a + b)*b® . Contradiction.

So the quest goes on ...
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Muller automata

* A nondeterministic Muller automaton (NMA)
has a collection {Fy, Fy, ..., F,,_4 } of sets of
accepting states.

* Arunis accepting if the set of states it visits
infinitely often is equal to one of the sets in
the collection.
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From Buchi to Muller automata

Let A be a NBA with set F of accepting states.
A set of states of A is good if it contains some state of

F

Let G be the set of all good sets of A.

Let A’ be "the same automaton" as 4, but with Muller
condition G.

Let p be an arbitrary run of A and A’. We have

iff
iff
iff

p isaccepting in A

inf(p) contains some state of F
inf(p) is a good set of A

p is accepting in A’
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From Muller to Blichi automata

Let A be a NMA with condition {F,, F;, ..., F,,,_1 }.
Let A, ..., A,,_; be NMAs with the same structure
as A but Muller conditions {F,},{F;}, ..., {F,_1}
respectively.
We have: L(A) =L(Ay)U ..UL(A,,_1)
We proceed in two steps:

1. we construct for each NMA 4; an NGA A4;’ such that

L(A) = L(4)
2. we construct an NGA A’ such that
L(A) =LAV .. ULA 1)
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NMA

Transitions leaving
F; are duplicated
and resent to the
copy of F;

Im

91

)

1 w-Automata and w-Languages

NGA with accepting
condition

{{g1}. ... {am}}
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NMAItoNGA(A)
Input: NMA A = (Q, X, qo.0, (F}
Output: NGAA = (Q'.X,¢;.6".F)

1 Q.05 <0

2 gy < 190,01

3 W« {lq0.01}

4 while W # 0 do

5 pick [g. i] from W: add [q,i] to Q"

6 ifge Fandi=1thenadd {[¢.1]} to F"
7 forallac X, ¢’ € 5(q,a)do

8 if i = 0 then

9 add ([q.0].a,[q".0]) to &’

10 if[¢.0] ¢ Q' thenadd [¢’.0] to W

11 if ¢ € F then

12 add ([¢.0].a.[¢’,1]) to &

13 if[¢,1]¢ Q' thenadd [¢,1] toW
14 else /#i=1%

15 if ¢ € F then

16 add ([g, 1],a,[q’, 1]) to &'

17 if[¢’. 1] ¢ ¢ thenadd [¢',1] toW

18 return (Q'.X.q. 6. 9")
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F={Fo, Fi}
Fo={q}
Fi={r}
b a
a
b
a
Fo=1{lg. 11} F={Ir11}
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Equivalence of NMAs and DMAs

» Theorem (Safra): Any NBA with n states can be

effectively transformed into a DMA of size n?™.

Proof: Omitted.
e DMAfor (a + b)*b®:

a b
(Y » () with accepting

L T condition
@‘—6 {{a:1}}
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* Question: Are there other classes of omega-
automata with
— the same expressive power as NBAs or NGAs, and
— with equivalent deterministic and
nondeterministic versions?

« Answer: Yes, Muller automata
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Is the quest over?

 Recall the translation NBA = NMA

» The NMA has the same structure as the NBA;
its accepting condition are all the good sets
of states.

» The translation has exponential complexity.

New question: Is there a class of w-automata with
— the same expressive power as NBAs,

— equivalent deterministic and nondeterministic
versions, and
— polynomial conversions to and from Bilichi automata?

1 w-Automata and w-Languages
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Rabin automata

» The acceptance condition is a set of pairs
{ <F01 GO>1 Ty (Fm—11 Gm—l) }
» Arun p is accepting if there is a pair
(F;, G;) such that p visits the set F; infinitely
often and the set G; finitely often.
 Translations NBA = NRA and NRA = NBA are
left as an exercise.

» Theorem (Safra): Any NBA with n states can be
effectively transformed into a DRA with
n9Mstates and 0 (n) accepting pairs.
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2. Implementing Boolean Operations for Biichi Automata
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Intersection of NBAs

* The algorithm for NFAs does not work ...

(W@ @R

a
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Solution

Apply the same idea as in the conversion NGA = NBA
1. Take two copies of the pairing [A1, A,].

2 Implementing Boolean Operations for Biichi Automata
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Solution

Apply the same idea as in the conversion NGA = NBA
1. Take two copies of the pairing [A1, A,].

2. Redirect transitions of the first copy leaving F; to the
second copy.
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Solution

Apply the same idea as in the conversion NGA = NBA

1.
2.

3.

Take two copies of the pairing [44, 4,].

Redirect transitions of the first copy leaving F; to the
second copy.

Redirect transitions of the second copy leaving F,to the
second copy.

2 Implementing Boolean Operations for Biichi Automata
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Solution

Apply the same idea as in the conversion NGA = NBA

1.
2.

3.

Take two copies of the pairing [44, 4,].

Redirect transitions of the first copy leaving F; to the
second copy.

Redirect transitions of the second copy leaving F,to the
second copy.

Set F to the set F; in the first copy.

2 Implementing Boolean Operations for Biichi Automata
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IntersNBA(A |, Az)

Input: NBAs A = (Q1,Z,61,q01, F1), A2 = (02, %,02,q02, F2)
Output: NBA A N, A> = (Q, X, 6, qo, F) with L,(A; N, A2) = L,(A1) N L,(Az)

Q.6.F <0 8

40 < [qo1.902, 1] 9

W« {lqo1.q02. 11}

while W # 0 do 10
pick [q1, 2, i] from W 11

add [¢1.g2.i] to Q"
ifg € Fandi=1 thenadd [q.q.1] to F" 12

20
21

for all a € X do
for all ¢| € 61(q1,a), 4} € 5(q2,a) do

ifi=1and g ¢ F| then

add (g1, 92, 1], a.[q}]. g5, 1]) to &

if [¢].¢5. 11 ¢ Q' then add [q].45.1] to W
ifi = 1and g, € F| then

add ([¢1,92.1].a.[4}.45. 2D to &

if [¢].¢5.2) ¢ Q' then add [q].45.2] to W
ifi =2and g ¢ F, then

add ([¢1,92,2.a,19}.45. 2D to &

if [¢],45.2] ¢ Q' then add [q],45.2] to W
ifi =2 and ¢, € F; then

add ([q1,92,2),a,14].45, 1)) to &

if (¢, ¢, 11¢ Q' thenadd [q],q}, 1] to W

22 return (Q,X,6,qo, F)
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Special cases/improvements

* |If all states of at least one of 4, and A, are
accepting, the algorithm for NFAs works.
o Intersection of NBAs A;, 4,, ..., Ay
— Do NOT apply the algorithm for two NBAs
(k — 1) times.
— Proceed instead as in the translation
NGA = NBA: take k copies of [4,, 4,, ..., Ay ]
(kn, ..n, statesinstead of 2%n, ..n;)
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Complement

 Main result proved by Biichi: NBAs are closed
under complement.

« Many later improvements in recent years.

* Construction radically different from the one
for NFAs.

AFS 2 Implementing Boolean Operations for Biichi Automata
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Problems

» The powerset construction does not work.

 Exchanging final and non-final states in DBAs
also fails.
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Solution

+ Extend the idea used to determinize co-Buchi
automata with a new component.

* Recall: a NBA accepts a word w iff some path of
dag(w) visits final states infinitely often.

« Goal: given NBA A4, construct NBA A such that:

A rejects w
iff
iff
some run of A visits accepting states of A i.o.
iff
A accepts w

no path of dag(w) visits accepting states of A i.o.
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Running example

a
0
b
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Rankings

» Mappings that associate to every node of
dag(w) arank (a natural number) such that
— ranks never increase along a path, and
— ranks of accepting nodes are even.

AFS 2 Implementing Boolean Operations for Biichi Automata
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Odd rankings

 Aranking is odd if every infinite path of
dag(w) visits nodes of odd rank i.o.

1 1 0 0 0

AFS 2 Implementing Boolean Operations for Biichi Automata
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Prop.: no path of dag(w) visits accepting states of 4 i.o.
iff
dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable
rank.

(€): The stable rank of every path is odd. Since accepting
nodes have even rank, no path visits accepting nodes i.o.
(=): We construct a ranking satisfying the conditions.
Give each accepting node (g, [) rank 2k, where k is the
maximal number of accepting nodes in a path starting at
(q.1).

Give a non-accepting node (g, [) rank 2k + 1, where 2k is
the maximal even rank among its descendants.
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e Goal: A rejects w
iff
dag(w) has an odd ranking
iff
some run of A visits accepting states of A i.o.
iff
A accepts w

* |dea: design A so that
— its runs on w are the rankings of dag(w), and
— its acceptings runs on w are the odd rankings of
dag(w) .
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Representing rankings

215 G- 105 ol fol -
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Representing rankings

1= [ol= (1= ol = 2]
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Representing rankings

1= [ol= (1= ol = 2]

AR .
* We can determine if [n;] - [Z,l] may appear in a
2

ranking by just looking at n,, n,, n7,n5 and [ : ranks
should not increase.

AFS 2 Implementing Boolean Operations for Biichi Automata
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First draft for A

 For a two-state A (more states analogous):
n .
— States: all [nﬂ where accepting states get even rank

— Initial states: all states of the form [nﬂ

. nyya [ng e
— Transitions: all [nz]_) o s.t. ranks don’t increase
2

The runs of the automaton on a word w
correspond to all the rankings of dag(w).

Observe: A is a NBA even if A is a DBA, because
there are many rankings for the same word.
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Problems to solve

» How to choose the accepting states?
— They should be chosen so that a run is accepted iff
its corresponding ranking is odd.
 Potentially infinitely many states (because
rankings can contain arbitrarily large numbers)

AFS 2 Implementing Boolean Operations for Biichi Automata
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Solving the first problem

» We use owing states and breakpoints again:

— A breakpoint of a ranking is now a level of the
ranking such that no state of the level owes a visit
to a node of odd rank.

— We have again: a ranking is odd iff it has infinitely
many breakpoints.

— We enrich the state with a set of owing states, and
choose the accepting states as those in which the
set is empty.
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Owing states

215 G- 105 ol fol -

{q0} {91} 1) {91} )
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Owing rankings

RRERHRHERE

o {91} {0} {9091} {0}
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Second draft for A

 For a two-state A (the case of more states is
analogous):

n
— States: all pairs [n;] , 0 wher accepting states get
even rank, and O is set of owing states (of even rank)

— Initial states: all [""],{qo} where n, evenif o
accepting.

n a [n)
— Transitions: all [nl] 0 - [n,l] ,0' s.t. ranks don‘t
2 n
increase and owing states are correctly updated

. nq
— Final states: all states [nZ] @
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 The runs of 4 on a word w correspond to all
the rankings of dag (w).

 The accepting runs of 4 on a word w
correspond to all the odd rankings of
dag(w).

» Therefore: L(A) = L(A)
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Solving the second problem

Proposition: If w is rejected by 4, then dag(w) has an odd
ranking in which ranks are taken from the range [0,2n],
where n is the number of states of A. Further, the initial
node gets rank 2n.

Proof: We construct such a ranking as follows:

» we proceed in n + 1 rounds (from round O to round n), each
round with two steps k.0 and k. 1 with the exception of
round n which only has n.0

» each step removes a set of nodes together with all its
descendants.

* thenodesremovedatstepi.;j getrank 2i + j

 the rank of the initial node is increased to 2n if necessary
(preserves the properties of rankings).
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The steps

« Step i.0: remove all nodes having only finitely
many successors.

« Stepi.1:remove nodes that are non-accepting
and have no accepting descendants

» This immediately guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can
only be removed at step i. 0
* It remains to prove: no nodes left after n + 1
rounds .

AFS 2 Implementing Boolean Operations for Biichi Automata
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* To prove: no nodes left after n rounds .
 Each level of a dag has a width

» We define the width of a dag as the largest level
width that appears infinitely often.

 Each round decreases the width of the dag by at
least 1.

« Since the intial width is at most n after at most n

rounds the width is 0, and then step n. 0 removes all
nodes.

2 Implementing Boolean Operations for Biichi Automata




Final A

 For atwo-state A (the case of more states is
analogous):

. m .
— States: all pairs [nﬂ ,0 where O set of owing

states and accepting states get even rank

— Initial state: all [ZLn] {40}

H'™ n1 a n:’l ! ‘
— Transitions: all [nz] ,0 > [n’] ,0" s.t. ranks don‘t
2
increase and owing states are correctly updated

. nq
— Final states: all states [nz] 0

AFS 2 Implementing Boolean Operations for Biichi Automata
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An example

We construct the complements of
A; = ({q}.{a},6,{q},{q}) with 6(q, a) = {q}
A; = ({q}.{a}, 6, {q}, ®) with 6(q, @) = {q}
States of A;:
(0,2),(2,0),(0,{q}), (2, {q})

States of 4,:

(0,0),(1,0),(2,0),(0,{q}) (2.{q})
Initial state of A,and 4,: (2,{q})

2 Implementing Boolean Operations for Biichi Automata



AFS
1111 e

An example

 Transitions of A;:

(2.{a}) > (2.{a}) (2,40 > (0,0), (0.{a}) = (0.{a})
 Transitions of 4,:
(2.{a) = (2.{a}) . 2.{a) = (1,0).(2.{a} > (0.0,
(1,0) (1,0, (1,8) > (0,{g},

(0,{ah) > (0,{q})
 Final states of A;: (0, ®),(2,®) (unreachable)

* Final states of 4,: (0, 0),(1,0), (2, @) (only (1, @) is
reachable)
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CompNBA(A)
Input: NBA A = (Q.%,6, qo, F)
Output: NBA A = (0, X, 6,7, F) with L,(A) = L,(A)
0.6,F <0
qo < [Iro,{qo}]
W { [Iro,{q0}] }
while W # 0 do
pick [/r, P] from W; add [Ir, P] to 0
if P =0 then add [/r,P] to F
forall a € X1/ € R such that Ir v It do
if P # 0 then P’ «— {q € §(P,a) | Ir'(q) is even }
else P" — {ge€ Q|1r(q)iseven}
add ([Ir, P),a.[Ir',P']) to &
11 if [/, P'] ¢ O thenadd [Ir,P’] to W
12 return (Q,%, 6, g, F)

O 0 N NN R W N -

—
(=]
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Complexity

A state consists of a level of a ranking and a
set of owing states.

A level assigns to each state a number f [0,21]
or the symbol L.

So the complement NBA has at most

(2n + 2)" - 2" € n0 = 20(mlogn) gtates,
Compare with 2" for the NFA case.

We show that the log n factor is unavoidable.
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We define a family {L,, },,>; of w-languages s.t.
— L, is accepted by a NBA with n + 2 states.

— Every NBA accepting L,, has at least n! € 20 logn)
states.

» The alphabetof L, isZ,, = {1,2,...,n,#}.
» Assigntoawordw € X, agraph G(w) as
follows:
— Vertices: the numbers 1,2, ..., n.

— Edges: there is an edge i — j iff w contains infinitely
many occurrences of ij.

» Define: w € L, iff G(w) has a cycle.

AFS 2 Implementing Boolean Operations for Biichi Automata
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» L, isaccepted by a NBA with n + 2 states.
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Every NBA accepting L,, has at least n! €
20(nlogn) states,

 Let 7 denote a permutationof 1.2,... . n.

* We have:

a) For every 7, the word (z #)® belongs to L, (i.e.,
its graph contains no cycle).

b) For every two distinct 7, 7,, every word
containing inf. many occurrences of 7; and inf.
many occurrences of 7, belongsto L,,.

2 Implementing Boolean Operations for Biichi Automata




Every NBA accepting L,, has at least n! €
20(nlogn) states,

« Assume A recognizes L,, and let 7, 7, distinct.
By (a), A has runs p,, p, accepting (t_1 #)%,
(T, #)“. The sets of accepting states visited
l.0. by p,, p, are disjoint.

— Otherwise we can ““interleave*p,, p, to yield an
acepting run for a word with inf. Many occurrences
of 7, 7, , contradicting (b).

* S0 A has at least one accepting state for each

permutation, and so at least n! States.

AFS 2 Implementing Boolean Operations for Biichi Automata
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