10. Presburger Arithmetic

Presburger Arithmetic is the first-order theory over the natural numbers (\mathbb{N}_0) with addition (+) as relation. It is convenient to also allow the constants 0 and 1 and the relations \leq and <, with the canonical interpretation.

PA is named in honor of Mojżesz Presburger (1904–1943?):

- born in Warsaw
- died in Holocaust (1943?)
- student of Alfred Tarski
- MA-thesis: About the completeness of a certain system of integer arithmetic in which addition is the only operation (1930)

Again we are interested in which arithmetical problems can be solved using automata!

Syntax of PA

- Symbols: variables x, y, z ... constants 0, 1 arithmetic symbols +, =< logical symbols or, not, Exists parenthesis
- Terms: a variable is a term 0 and 1 are terms if t and u are terms, then t + u is a term
- Atomic formulas: t = < u, where t and u are terms

Syntax of PA

- Formulas:
 - every atomic formula is a formula;
 - if φ_1, φ_2 are formulas, then so are $\neg \varphi_1, \varphi_1 \lor \varphi_2$, and $\exists x \varphi_1$.
- Free and bound variables:
 - a variable is bound if it is in the scope of an existential quantifier, otherwise it is free.
- A formula without free variables is called a sentence

Abbreviations

Conjunction, implication, bi-implication, universal quantification

$$n = \underbrace{1+1+\ldots+1}_{n \text{ times}} \qquad t \ge t' = t' \le t$$

$$nx = \underbrace{x+x+\ldots+x}_{n \text{ times}} \qquad t < t' = t \le t' \land t \ge t'$$

$$nx = t \le t' \land \neg(t = t')$$

Semantics (intuition)

- The semantics of a sentence is "true" or "false"
- The semantics of a formula with free variables (x_1, ..., x_k) is the set containing all tuples (n_1, ..., n_k) of natural numbers that "satisfy the formula"

Semantics (more formally)

- An interpretation of a formula F is any function that assigns a natural number to every variable appearing in f (and perhaps also to others).

Given an interpretation I, a variable x, and a number n, we denote by I[n/x] the interpretation that assigns to x the number n, and to all other variables the same value as I.

Semantics (more formally)

- We define when an interpretation satisfies a formula F.

$\mathcal{I} \models t \leq u$	iff	$\mathfrak{I}(t) \leq \mathfrak{I}(u)$
$\mathfrak{I}\models\neg\varphi_1$	iff	$\mathfrak{I}\not\models\varphi_1$
$\mathbb{J}\models\varphi_1\vee\varphi_2$	iff	$\mathfrak{I} \models \varphi_1 \text{ or } \mathfrak{I} \models \varphi_2$
$\mathcal{I} \models \exists x \varphi$	iff	there exists $n \ge 0$ such that $I[n/x] \models \varphi$

- Lemma: Let F be a formula, and let I1, I2 be two interpretations of F. If I1 and I2 assign the same values to all FREE variables of F, then either they both satisfy F or none of them satisfies F.
- Consequence: if F is a sentence, either all interpretations satisfy F, or none of them satisfies F.

Semantics (more formally)

- We say a sentence is true if it is satisfied by all interpretations.
- We say a sentence is false if it is not satisfied by any interpretation.
- A model or solution of a formula F is the projection of any interpretation that satisfies F onto the free variables of F.
- The set of models or solutions of F is also called the solution space of F, and denoted by Sol(F).

Language of a formula

we encode natural numbers as strings over $\{0, 1\}$ using the least-significant-bit-first encoding *lsbf*. If we have free variables x_1, \ldots, x_k , the elements of the solution space are encoded as a word over $\{0, 1\}^k$. For instance, the word

x_1	[1]	[0]	[1]	[0]
x_2	0	1	0	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
<i>x</i> ₃	0	[0]	0	[0]

is an encoding of the solution (3, 10, 0). The language of a formula is then defined to be

 $\mathcal{L}(\varphi) = \{ lsbf(s) \mid s \in Sol(\varphi) \}$

Constructing an NFA for the solution space

Given a formula F, we construct an NFA Aut(F) such that L(Aut(F)) = L(F).

We can take:

- Aut(not F) = CompNFA(Aut(F))
- Aut(F or G) = UnionNFA(Aut(F), Aut(G))
- Aut(Exists x F) = Projection_x(Aut (F))

So it remains to define Aut(F) for an atomic formula F.

All atomic formulas equivalent (same solutions) to atomic formulas of the form

$$\varphi = a_1 x_1 + \ldots + a_n x_n \le b = a \cdot x \le b$$

where the a_i and b can be arbitrary integers (possibly negative).

Consider a candidate solution

For every $j \le m$, let $c^j \in \mathbb{N}^n$ denote the tuple of numbers encoded by the prefix $\zeta_0 \dots \zeta_{j-1}$. For instance, for the encoding $\zeta_0 \zeta_1 \zeta_2$ of the tuple (0, 4, 7, 3) given by

	ζ0	ζ1	ζ_2			ζ0	ζ_1
0	[0]	[0]	[0]		0	[0]	[0]
	0	0	1	we get	0	0	0
4 7 3	$\begin{bmatrix} 0\\0\\1\\1\end{bmatrix}$	$\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$	$\begin{bmatrix} 0\\1\\1\\0\end{bmatrix}$		3	$\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$	$\begin{bmatrix} 0\\0\\1\\1\end{bmatrix}$
3	[1]	1	0		3	[1]	[1]

and so $c^2 = (0, 0, 3, 3)$. Define further $c^0 = (0, 0, 0, 0)$; i.e., before reading anything all components of the tuple are 0.

We construct a DFA for the solution space of φ . The idea is that after reading a prefix $\zeta_0 \dots \zeta_{j-1}$ the automaton should be in the state

$$\left\lfloor \frac{1}{2^{j}} \left(b - a \cdot c^{j} \right) \right\rfloor \tag{10.1}$$

Initially we have $c^0 = (0, ..., 0)$, and so the initial state is the number $\frac{1}{2^0}(b-a \cdot c^0) = b$. For the transitions, assume that before and after reading the letter ζ_j the automaton is in the states q and q', respectively. Then we have

$$q = \left\lfloor \frac{1}{2^{j}} \left(b - a \cdot c^{j} \right) \right\rfloor$$
 and $q' = \left\lfloor \frac{1}{2^{j+1}} \left(b - a \cdot c^{j+1} \right) \right\rfloor$

From the definition of c^j we get:

$$c^{j+1} = c^j + 2^j \zeta_j$$

Inserting this in the expression for q', and comparing with q, we obtain the following relation between q and q':

$$q' = \left\lfloor \frac{1}{2}(q - a \cdot \zeta_j) \right\rfloor$$

So for every state q and every letter $\zeta \in \{0, 1\}^n$ we take $\delta(q, \zeta) := \frac{1}{2}(q - a \cdot \zeta)$.

PAtoDFA(φ) **Input:** PA formula $\varphi = a \cdot x \le b$ **Output:** DFA $A = (Q, \Sigma, \delta, q_0, F)$ such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$

1
$$q_0 \leftarrow s_b$$

2
$$W \leftarrow \{s_b\}$$

- 3 while $W \neq \emptyset$ do
- 4 pick s_k from W
- 5 add s_k to Q
- 6 **if** $k \ge 0$ then add s_k to F
- 7 **for all** $\zeta \in \{0, 1\}^n$ **do**

8
$$j \leftarrow \left| \frac{1}{2} (k - a \cdot \zeta) \right|$$

9 **if** $s_j \notin Q$ then add s_j to W

10 **add**
$$(s_k, \zeta, s_j)$$
 to δ

Figure 10.1: DFAs for the formula $2x - y \le 2$.

Figure 10.2: DFAs for the formula $x + y \ge 4$.

