» Assume we can construct a formula
Visits(Xy, ..., X5)
which is true for (w, 7) iff
I(Xo) = Py, ... 9(Xp) = Py,
» Then (w, 7) satisfies the formula
Yy =X ... X, Visits(Xp, ... X,) A Ix [last(x) A \/ x€X;

qgieF

iff w has a last letter and w € L, and we easily
get a formula expressing L .
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To construct Visits(X,, ..., X, ) we observe that
the sets P, are the unique sets satisfying
a) 1€ Pgsq,a, I-€. afterreading the first letter the
DFAisin state 6(qq, a;).

b) The sets P, build a partition of the set of positions,
i.e., the DFA is always in exactly one state.

c) Ifie P and8(q,a;41) =q' theni+1€ Py, ie,
the sets ,,match“ §.
We give formulas for a) , b), and c)

9 Automata and Monadic Second-Order Logic




» Formula for a)

Init(Xo, ..., X,) = Ix (ﬁrst(x) A [\/(Qa(x) AXE Xi,,)]]

aex

» Formula for b)

Oeermmmmennnas Orremennnenaas =]

n

Partition(Xo,...,X,) = Vx | \/xeXi A /\ (xeXi>xgX)
i=0 i,j=0
[
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» Formula for c)
Respect(Xo, ..., X,) =

Vavy | y=x+1—> \/ (x€X; A Qu(x) Ay € X))

acx
i,j€{0,...,n}
6(gi,a) = q;

* Together:
Visits(Xo, . .. X,) := Init(Xy, ..., X,) A
Partition(Xy, ..., X,) A
Respect(Xy, ..., X,)
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Every language expressible in MSO
logic is regular

Recall: an interpretation of a formula is a pair
(w, 9) consisting of a word w and
assignments J to the free first and second
order variables (and perhaps to others).

x—- 1 x> 2

y—3 y 1
aab,XH{2’3} ba’Xr—)(Z)

Y - (1,2} Y - {1}
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» We encode interpretations as words.

x— 1 x> 2
y 3 y 1

aab,XH{z,S} ba’XHQ)
Y - {1,2} Y - {1}
a a b b a

X 1 00 X 0 1

y 0 0 1 y 1 0

X 0 1 1 X 0 0

Y 1 1 0 Y 1 0
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» Given a formula with n free variables, we
encode an interpretation (w, 7) as a word
enc(w, 7) over the alphabet X > {0,1}".

 The language of the formula ¢ , denoted by
L(¢), is given by

L(p)={enc(w,D| (w,7) = ¢}

» We prove by induction on the structure of ¢
that L(¢) is regular (and explicitely construct
an automaton for it).
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Case ¢ = Qq(x)

e ¢ = Q,(x). Then free(p) = x, and the interpretations of ¢ are encoded as words over
2 % {0, 1}. The language L(yp) is given by

! k>0, 1
L(p) = [7‘] [ﬁ* a; € Tand b; € {0, l}foreveryie (1,...,k}, and
l e 176 | b; = 1 for exactly one index i € {1, k} such thata; = a J
and is recognized by
al |p al [b
R

8,
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Case p =x <y

e ¢ = x < y. Then free(p) = {x,y}, and the interpretations of ¢ are encoded as words
over X x {0, 1}%. The language L(y) is given by

k>0,
a ar|| a; € Zand b;,c; €{0,1} foreveryi e {l,...,k},
L(p) =4|b, by|| b; =1 for exactly one index i € {1,...,k},
c ck|| c;j=1forexactly one index j € {1,...,k}, and
i<j
and is recognized by
al|b al [b allb
oflo ol,[o offo
B

- oS
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Case p =x€X

e ¢ = x € X. Then free(¢) = {x, X}, and interpretations are encoded as words over
¥ x {0, 1)>. The language L(y) is given by

k>0,
Lig) = Z‘ Z" a;€Zand by, c; € {0, 1} forevery i € {1,... .k},
$)= cl ck b—lforexactlyoneindexie[l ., k}, and
1 k

forevery i€ {l,...,k}, 1fb—1thenc,—1
and is recognized by

a
0],
0

a

S o
c oS
— o2

b
.0
1

oo
=)
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Case ¢ = Y

» Then free(¢) = free(y) . By i.h. L(¥) is regular.

* L(g)isequal to L(y) minus the words that do not encode any
implementation (,,the garbage®).

 Equivalently, L(¢) is equal to the intersection of L(y) and the
encodings of all interpretations of .

» We show that the set of these encodings is regular.

— Condition for encoding: Let x be a free first-oder variable of
1 . The projection of an encoding onto x must belong to
0710* (because it represents one position).

— So we just need an automaton for the words satisfying this
condition for every free first-order variable.
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Example: free(p) = {x, y}
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Case ¢ = @1V @,

* Then free(p) = free(p,) U free(¢,).Byi.h. L(¢;)
and L(¢-,) are regular.

o If free(p,) = free(p;) then L(¢) = L(¢1) U L(¢)
and so L(¢) is regular.
o If free(p,) # free(p,) then we extend L(¢,) toa
language L; encoding all interpretations of
free(p,) U free(p,) whose projection onto
free(¢,) belongs to L(¢,). Similarly we extend
L(¢p,) to L,. We have
— L, and L, are regular.
— L(p) =L, UL,.
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Example: ¢ = Q,(x) vV Q_b(y)

* L, contains the encodings of all

interpretations (w, {x +— ny,y — n,}) such
that the encoding of (w, {x — n,}) belongs
to L(Q4(x)).

e Automata for L(Q,(x)) and L;:

S o =
— o<
S o~
=

o

a a al |a
o[.|o].]c o|.[o].|o.]0
of | o] [1 1
al |a
Co o G Co ] O
O—O O——0O



Cases @ = dx ¢y and = 3IX ¢

* Then free(p)= free(Y)\{x} or free(p)=
free()\ {X}

e Byi.h. L(¥) is regular.

» L(¢) is the result of projecting L(y) onto the
components for free(y)\ {x} or

free()\ {X}.
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Example: ¢ = Q,(x)

» Automata for Q,(x) and 3Ix Q,(x)
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The mega-example

We compute an automaton for

dx (last(x) A Qp(x)) A Vx (—last(x) — Q.(x))
First we rewrite ¢ into

dx (last(x) A Qp(x)) A —dx (—last(x) A =Q,(x))
In the next slides we

1. compute a DFA for last(x)

2. compute DFAs for 3x (last(x) A Q,(x)) and
=3x (=last(x) A —=Qq4(x))

3. compute a DFA for the complete formula.
We denote the DFA for a formula ¥ by [¢].
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[Fx (last(x) AQy (x))]
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a,b
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[04(0)] [x (last(x) A Qy())]
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[—3x (—-last(x) A —-Qa(x))]

AFS 9 Automata and Monadic Second-Order Logic
1111 e



[3x (last(x) AQp (x))
A =3x (=last(x) A =Qq(x))]

a,b a
é % b C ‘O b .O

[3x (last(x) A Qp(x))] [—3x (=last(x) A = Qq(x))]

a

B0

[Tx (ast(x) A Op(x)) A —=3x (mlast(x) A =Q,(x))]
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