
System NFA

AFS 8 Verification 236/431
c©je/ewm

System NFA

AFS 8 Verification 237/431
c©je/ewm

System NFA

AFS 8 Verification 238/431
c©je/ewm

Property NFA
• Is there a full execution such that

– initially ݕ = 1,
– finally ݕ = 0, and
– ݕ never increases?

• Set of potential executions for this property:
݈, ,ݔ 1 ݈, ,ݔ 1 ∗	 ݈, ,ݔ 0 ∗	[5, ,ݔ 0]

• Automaton for this set:

AFS 8 Verification 239/431
c©je/ewm

Intersection of the system and
property NFAs

• Automaton is empty, and so no execution satisfies the
property

AFS 8 Verification 240/431
c©je/ewm

Another property
• Is the assignment ݕ ← ݔ − 1 redundant?
• Potential executions that use the assignment:
݈, ݕ,ݔ ∗ ,ݔ,4 0 ,ݔ,1 1 + 4, ,ݔ 1 ,ݔ,1 0 	 ݈, ,ݔ ݕ ∗

• Therefore: assignment redundant iff none of
these potential executions is a real execution
of the program.

AFS 8 Verification 241/431
c©je/ewm

Networks of automata

AFS 8 Verification 242/431
c©je/ewm

• Tuple ࣛ = ,ଵܣ … ௡ܣ, of NFAs .
• Each NFA has its own alphabet 	Σ௜ of actions
• Alphabets usually not disjoint!
• ௜ܣ participates in action ܽ if ܽ ∈ Σ௜ .
• A configuration is a tuple ݍଵ, … , ௡ݍ of states, one for

each automaton of the network.
• ,ଵݍ … , ௡ݍ enables ܽ if every participant in ܽ is in a

state from which an ܽ-transition is possible.
• Enabled actions can occur, and their occurrence

simultaneously changes the states of their
participants. Non-participants stay idle and don‘t
change their states.

AFS 8 Verification 243/431
c©je/ewm

Configuration
graph of the
network

AFS 8 Verification 244/431
c©je/ewm

AFS 8 Verification 245/431
c©je/ewm

Concurrent programs as networks of automata:
Lamport‘s 1-bit algorithm (JACM86)

Shared variables: b[1], ..., b[n] ∈ {0,1}, initially 0
Process i ∈ {1, ...,n}

repeat forever
noncritical section

T: b[i]:=1
for j ∈ {1, ...,i-1}

if b[j]=1 then b[i]:=0
await ¬b[j]
goto T

for j ∈ {i+1, ...,N} await	¬b[j]
critical section
b[i]:=0

AFS 8 Verification 246/431
c©je/ewm

Network for the two-process case

AFS 8 Verification 247/431
c©je/ewm

Asynchronous product

AFS 8 Verification 248/431
c©je/ewm

Checking properties of the algorithm

• Deadlock freedom: every configuration has at least one
successor.

• Mutual exclusion: no configuration of the form
[ܾ଴, ܾଵ, ܿ଴, ܿଵ] is reachable

• Bounded overtaking (for process 0): after process 0 signals
interest in accessing the critical section, process 1 can enter
the critical section at most one before process 0 enters.
– Let ܰܥ௜ , ௜ܶ ௜ܥ, be the configurations in which process i is

non-critical, trying, or critical
– Set of potential executions violating the property:

AFS 8 Verification 249/431
c©je/ewm

AFS 8 Verification 250/431
c©je/ewm

The state-explosion problem

• In sequential programs, the number of
reachable configurations grows exponentially
in the number of variables.

• Proposition: The following problem is PSPACE-
complete.
– Given: a boolean program ߨ (program with only

boolean variables), and a NFA ܣ௏ recognizing a
set of potential executions

– Decide: Is ܧగ ∩ (௏ܣ)ܮ empty?

AFS 8 Verification 251/431
c©je/ewm

The state-explosion problem

• In concurrent programs, the number of
reachable configurations also grows
exponentially in the number of components.

• Proposition: The following problem is PSPACE-
complete.
– Given: a network of automata ࣛ = ,ଵܣ … ௡ܣ, 	

and a NFA ܣ௏ recognizing a set of potential
executions of ࣛ

– Decide: Is ܮ ௡ܣ⊗⋯⊗ଵܣ ௏ܣ⊗ = ∅ ?

AFS 8 Verification 252/431
c©je/ewm

