System NFA

while x = | do

if y = 1 then
x <0
ye—1-x

R Y Sy

B W -

LLQ)— Q1D 410

AFS 8 Verification
©je/ewm

AFS
©je/ewm

1,1,0

System NFA

8 Verification

AFS
1111 e

System NFA

8 Verification

AFS
1111 e

Property NFA

* |s there a full execution such that
— initially y = 1,
— finallyy =0, and
— yneverincreases?
» Set of potential executions for this property:
[1,x,][I, x,1]" [I, x,0]" [5,x,0]
» Automaton for this set:

8 Verification

AFS
1111 e

Intersection of the system and
property NFAs

« Automaton is empty, and so no execution satisfies the
property

8 Verification

Another property

* |s the assignment y < x — 1 redundant?

* Potential executions that use the assignment:
[1,x,v]*([4,x,0][1,x,1] + [4,x,1][1,x,0]) [, x, y]*

 Therefore: assignment redundant iff none of

these potential executions is a real execution
of the program.

AFS 8 Verification
©je/ewm

AFS
©je/ewm

lnCz

A
4567

0123

Networks of automata

lnCz

8 Verification

o Tuple A = (A, .., A,)of NFAs.

» Each NFA has its own alphabet X; of actions

 Alphabets usually not disjoint!

» A; participatesinactiona ifa € Z; .

» Aconfiguration is a tuple {q4, ..., q5) Of states, one for
each automaton of the network.

* (q1,...,qn) €nables a if every participantin aisina
state from which an a-transition is possible.

» Enabled actions can occur, and their occurrence
simultaneously changes the states of their
participants. Non-participants stay idle and don‘t
change their states.

AFS 8 Verification
©je/ewm

AFS
©je/ewm

Configuration
graph of the
network

8 Verification

inc,

AsyncProduct(Ay, ..., A,)
Input: a network of automata A = Ay,...A,, where

Ay = (lezl‘dlyqol» Ql)s LA = (Qn- DI R qon, Qn)
Output: the asynchronous product A ®---®A, = (Q,X,6, qo, F)
1 Q6F«0
2 qo < lqo1s--->qonl
3 W e{lqo1s-..,qonl}
4 while W # 0 do
5 pick [q1,...,q,] from W
6 add [q,...,q.] to Q
7 add [q,..., qn) to F
8 forallaeZ,U...UZ, do
9 foralli < [l..n] do

10 if a € Z; then Q] « 0;(g;, a) else Q! = {g;}

11 forall [¢|,...,q,] € Q| X...X Q) do

12 if[q],....q,] ¢ Qthenadd [q],...,q,] toW
13 add ([q1.....qu).a.1q},....q,]) tos

14 return (Q, X, 6, qo, F)

AFS 8 Verification
©je/ewm

AFS
©je/ewm

Concurrent programs as networks of automata:

Lamport's 1-bit algorithm (JACM86)

Shared variables: b[1], ..., b[n] € {0,1}, initially O
Processi € {1, ...,n}

repeat forever

noncritical section
T. b[i]:=1
forje{d,...,i-1}
if b[j]=1 then bl[i]:=0
await =b[j]
gotoT
forj e {i+1, ...,N} await =b][j]
critical section
b[i]:=0

8 Verification

Network for the two-process case

m AFS 8 Verification
©je/ewm

AFS
1111 e

Asynchronous product

8 Verification

AFS
©je/ewm

Checking properties of the algorithm

e Deadlock freedom: every configuration has at least one
successor.

» Mutual exclusion: no configuration of the form
[bo, b1, Co, €1] is reachable

» Bounded overtaking (for process 0): after process 0 signals
interest in accessing the critical section, process 1 can enter
the critical section at most one before process 0 enters.

— Let NC;, T;, C; be the configurations in which process i is
non-critical, trying, or critical
— Set of potential executions violating the property:

T (E\Co)" €1 (E\Co)" NCy (Z\Co)" €1 &7

8 Verification

CheckViol(Ay, ...,A,, V)

Input: anetwork (Aj,...A,), where A; = (Q;, X, 6, qoi» Qi):
anNFAV = (Qy, X U...UZ,,dv, qov F\).

Output: true if A} ® --- ® A, ® V is nonempty, false otherwise.

1 Q< 0;90 < [qo15---qon qov]
2 W {qo}
3 while W # 0 do

4 pick [q1,...,qn, q] from W
5 add [q1,...,qn,ql to Q
6 forallae X, U...UZX, do
7 foralli € [1..n] do
8 if a € I; then Q] « 6i(g;, a) else Q! = {q;}
9 Q' < ovig,a)
10 forall [¢,...,q,,q4'] € Q] x...X Q) x Q" do
11 if AL, ¢/ € F; and ¢ € F, then return true
12 if [¢},....q,,9'] ¢ Q thenadd [g},...,q,,q'] to
w

13 return false

AFS 8 Verification
©je/ewm

The state-explosion problem

* In sequential programs, the number of
reachable configurations grows exponentially
in the number of variables.

* Proposition: The following problem is PSPACE-
complete.

— Given: a boolean program 7 (program with only
boolean variables), and a NFA A, recognizing a
set of potential executions

— Decide: Is E; n L(Ay) empty?

AFS 8 Verification
©je/ewm

AFS
©je/ewm

The state-explosion problem

* In concurrent programs, the number of
reachable configurations also grows
exponentially in the number of components.

* Proposition: The following problem is PSPACE-
complete.

— Given: a network of automata A = (44, ..., Ay)
and a NFA Ay, recognizing a set of potential
executions of A

—Decide: ISL(A; @ R4, QAy) =07?

8 Verification

