Operations on relations

Definition 6.10 A word relation $R \subseteq \Sigma^* \times \Sigma^*$ has length $n \ge 0$ if it is empty and n = 0, or if it is nonempty and for all pairs (w_1, w_2) of R the words w_1 and w_2 have length n. If R has length n for some $n \ge 0$, then we say that R is a fixed-length word relation, or that R has fixed-length.

Definition 6.12 The master transducer over the alphabet Σ is the tuple $MT = (Q_M, \Sigma \times \Sigma, \delta_M, F_M)$, where

- Q_M is is the set of all fixed-length relations;
- $\delta_M: Q_M \times (\Sigma \times \Sigma) \to Q_M$ is given by $\delta_M(R, [a, b]) = R^{[a,b]}$ for every $q \in Q_M$ and $a, b \in \Sigma$;
- $F_M = \{(\varepsilon, \varepsilon)\}.$

With T_R as the "fragment" of MT with R as root we get:

Proposition 6.13 For every fixed-length word relation R, the transducer T_R is the minimal deterministic transducer recognizing R.

Storing minimal transducers

Like minimal DFA, minimal deterministic transducers are represented as tables of nodes. However, a remark is in order: since a state of a deterministic transducer has $|\Sigma|^2$ successors, one for each letter of $\Sigma \times \Sigma$, a row of the table has $|\Sigma|^2$ entries, too large when the table is only sparsely filled. Sparse transducers over $\Sigma \times \Sigma$ are better encoded as NFAs over Σ by introducing auxiliary states: a transition $q \xrightarrow{[a,b]} q'$ of the transducer is "simulated" by two transitions $q \xrightarrow{a} r \xrightarrow{b} q'$, where *r* is an auxiliary state with exactly one input and one output transition.

Computing joins

Equations:

• $\emptyset \circ R = R \circ \emptyset = \emptyset;$

•
$$\{(\varepsilon, \varepsilon)\} \circ \{(\varepsilon, \varepsilon)\} = \{(\varepsilon, \varepsilon)\};$$

•
$$R_1 \circ R_2 = \bigcup_{a,b,c\in\Sigma} [a,b] \cdot \left(R_1^{[a,c]} \circ R_2^{[c,b]}\right).$$

Input: transducer table *T*, states q_1, q_2 of *T* **Output:** state recognizing $\mathcal{L}(q_1) \circ \mathcal{L}(q_2)$

1
$$join[T](q_1, q_2)$$

2 **if**
$$G(q_1, q_2)$$
 is not empty **then return** $G(q_1, q_2)$

3 **if**
$$q_1 = q_0$$
 or $q_2 = q_0$ then return q_0

4 else if
$$q_1 = q_{\epsilon}$$
 and $q_2 = q_{\epsilon}$ then return q_{ϵ}

5 else
$$/ * q_{\emptyset} \neq q_1 \neq q_{\epsilon}, q_{\emptyset} \neq q_2 \neq q_{\epsilon} * /$$

6 **for all**
$$(a_i, a_j) \in \Sigma \times \Sigma$$
 do

$$q_{a_i,a_j} \leftarrow union[T] \left(join(q_1^{[a_i,a_1]}, q_2^{[a_1,a_j]}), \dots, join(q_1^{[a_i,a_m]}, q_2^{[a_m,a_j]}) \right)$$

$$G(q_1, q_2) = make(q_{a_1, a_1}, \dots, q_{a_1, a_m}, \dots, q_{a_m, a_m})$$

9 return
$$G(q_1, q_2)$$

78

Pre and Post

Pre and Post can be reduced to intersection and projection. Define:

 $emb(L) = \{ [v_1, v_2] \in (\Sigma \times \Sigma)^n \mid v_2 \in L \}$

 $pre_{S}(L) = \{w_{1} \in \Sigma^{n} \mid \exists [v_{1}, v_{2}] \in S : v_{1} = w_{1} \text{ and } v_{2} \in L\}$

Then we have:

 $pre_{S}(L) = proj_{1}(S \cap emb(L))$

We use this to derive equations.

Equations:

$$\begin{split} & if S = \emptyset \ or \ L = \emptyset, \ then \ pre_S(L) = \emptyset; \\ & if S \neq \emptyset \neq L \ then \ pre_S(L) = \bigcup_{a,b\in\Sigma} a \cdot pre_{S[a,b]}(L^b), \\ & where \ S^{[a,b]} = \{w \in (\Sigma \times \Sigma)^* \mid [a,b]w \in S\}. \end{split}$$

$$\begin{split} (pre_{S}(L))^{a} &= (proj_{1}(S \cap emb(L)))^{a} \\ &= \left(proj_{1} \left(\bigcup_{b \in \Sigma} [a, b] \cdot (S \cap emb(L))^{[a, b]} \right) \right)^{a} \\ &= \left(\bigcup_{b \in \Sigma} proj_{1} \left([a, b] \cdot (S \cap emb(L))^{[a, b]} \right) \right)^{a} \\ &= \left(\bigcup_{b \in \Sigma} a \cdot proj_{1} \left((S \cap emb(L))^{[a, b]} \right) \right)^{a} \\ &= \bigcup_{b \in \Sigma} proj_{1} \left((S \cap emb(L))^{[a, b]} \right) \\ &= \bigcup_{b \in \Sigma} proj_{1} \left(S^{[a, b]} \cap emb(L^{b}) \right) \\ &= \bigcup_{b \in \Sigma} pre_{S}[a, b](L^{b}) \end{split}$$

Input: transducer table *TT*, table *T*, state *r* of *TT*, state *q* of *T* **Output:** state of *T* recognizing $pre_{\mathcal{L}(r)}(\mathcal{L}(q))$

1
$$pre[TT, T](r, q)$$

2 **if** $G(r, q)$ is not empty **then return** $G(r, q)$
3 **if** $r = r_{\emptyset}$ **or** $q = q_{\emptyset}$ **then return** q_{\emptyset}
4 **else if** $r = r_{\epsilon}$ **and** $q = q_{\epsilon}$ **then return** q_{ϵ}
5 **else**
6 **for all** $a_i \in \Sigma$ **do**
7 $q_{a_i} \leftarrow union \left(pre[TT, T] \left(q^{[a_i, a_1]}, r^{a_1} \right), \dots, pre[TT, T] \left(q^{[a_i, a_m]}, r^{a_m} \right) \right)$
8 $G(r, q) \leftarrow make(q_{a_1}, \dots, q_{a_m});$
9 **return** $G(r, q)$

Binary Decision

The master z-automaton

Length: 2

Data structure for z-automata

Ident.	Length	a-succ	b-succ
1	0	0	0
2	1	1	0
4	1	0	1
6	2	2	1

8. Verification

- We use languages to describe the implementation and specification of a system.
- We reduce the verification problem to language inclusion between implementation and specification.

- 1 while x = 1 do 2 if y = 1 then 3 $x \leftarrow 0$ 4 $y \leftarrow 1 - x$ 5 end
- Configuration: triple $[l, n_x, n_y]$ where
 - *l* is the current value of the program counter, and
 - n_{x} , n_{y} are the current values of x, y

Examples: [0,1,1], [5,0,1]

- Initial configuration: configuration with l = 1
- Potential execution: finite or infinite sequence of configurations

Examples: [0,1,1][4,1,0] [2,1,0][5,1,0] [1,1,0][2,1,0][4,1,0][1,1,0]

- 1 while x = 1 do 2 if y = 1 then 3 $x \leftarrow 0$ 4 $y \leftarrow 1 - x$ 5 end
- Execution: potential execution starting at an initial configuration, and where configurations are followed by their "legal successors" according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1] [1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite or ending at a configuration without successors)

Verification as a language problem

- Implementation: set *E* of executions
- Specification:
 - subset *P* of the potential executions that satisfy a property , or
 - subset V of the potential executions that violate a property
- Implementation satisfies specification if :
 - $E \subseteq P$, or
 - $E \cap V = \emptyset.$
- If E and P regular: inclusion checkable with automata
- If E and V regular: disjointness checkable with automata

Verification as a language problem

- Implementation: set *E* of executions
- Specification:
 - subset *P* of the potential executions that satisfy a property , or
 - subset V of the potential executions that violate a property
- Implementation satisfies specification if :
 - $E \subseteq P$, or
 - $E \cap V = \emptyset.$
- If E and P regular: inclusion checkable with automata
- If E and V regular: disjointness checkable with automata
- How often is the case that *E*, *P*, *V* are regular?

