
AFS 7 Finite Universes 216/431
c©je/ewm

AFS 7 Finite Universes 217/431
c©je/ewm

AFS 7 Finite Universes 218/431
c©je/ewm

AFS 7 Finite Universes 219/431
c©je/ewm

AFS 7 Finite Universes 220/431
c©je/ewm

AFS 7 Finite Universes 221/431
c©je/ewm

AFS 7 Finite Universes 222/431
c©je/ewm

AFS 7 Finite Universes 223/431
c©je/ewm

AFS 7 Finite Universes 224/431
c©je/ewm

AFS 7 Finite Universes 225/431
c©je/ewm

AFS 7 Finite Universes 226/431
c©je/ewm

AFS 7 Finite Universes 227/431
c©je/ewm

AFS 7 Finite Universes 228/431
c©je/ewm

AFS 7 Finite Universes 229/431
c©je/ewm

AFS 7 Finite Universes 230/431
c©je/ewm

8. Verification

We use languages to describe the implementation and specification of a system.

We reduce the verification problem to language inclusion between implementation
and specification.

AFS 8 Verification 231/431
c©je/ewm

• Configuration: triple [݈,݊௫ ,݊௬] where
• ݈ is the current value of the program counter, and
• ݊௫,݊௬ are the current values of ݕ,ݔ

Examples: [0,1,1], [5,0,1]

• Initial configuration: configuration with ݈ = 1

• Potential execution: finite or infinite sequence of configurations

Examples: [0,1,1][4,1,0]
[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]

AFS 8 Verification 232/431
c©je/ewm

• Execution: potential execution starting at an initial configuration,
and where configurations are followed by their „legal
successors“ according to the program semantics.

Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
[1,1,0][2,1,0][4,1,0][1,1,0]

• Full execution: execution that cannot be extended (either infinite
or ending at a configuration without successors)

AFS 8 Verification 233/431
c©je/ewm

Verification as a language problem
• Implementation: set ܧ of executions
• Specification:

– subset ܲ of the potential executions that satisfy a
property , or

– subset ܸ of the potential executions that violate a
property

• Implementation satisfies specification if :
 ܧ ⊆ ܲ , or
 	ܧ ∩ ܸ = 	∅.

• If ܧ and ܲ regular: inclusion checkable with automata
• If ܧ and ܸ regular: disjointness checkable with automata

• How often is the case that ܧ,ܲ,ܸ are regular?

AFS 8 Verification 234/431
c©je/ewm

Verification as a language problem
• Implementation: set ܧ of executions
• Specification:

– subset ܲ of the potential executions that satisfy a
property , or

– subset ܸ of the potential executions that violate a
property

• Implementation satisfies specification if :
 ܧ ⊆ ܲ , or
 	ܧ ∩ ܸ = 	∅.

• If ܧ and ܲ regular: inclusion checkable with automata
• If ܧ and ܸ regular: disjointness checkable with automata

• How often is the case that ܧ,ܲ,ܸ are regular?

AFS 8 Verification 235/431
c©je/ewm

