Implementing union and intersection

7 Finite Universes

- We give a recursive algorithm $inter[T](q_1, q_2)$:
 - Input: state identifiers q_1, q_2 from table T.
 - Output: identifier of the state recognizing $L(q_1) \cap L(q_2)$ in the multi-DFA for T.
 - Side-effect: if the identifier is not in *T*, then the algorithm adds new nodes to *T*, i.e., after termination the table T may have been extended.
- The algorithm follows immediately from the following properties

(1) if
$$L_1 = \emptyset$$
, then $L_1 \cap L_2 = \emptyset$;

- (2) if $L_2 = \emptyset$, then $L_1 \cap L_2 = \emptyset$;
- (3) If $L_1 \neq \emptyset$ and $L_2 \neq \emptyset$, then $(L_1 \cap L_2)^a = L_1^a \cap L_2^a$ for every $a \in \Sigma$.

inter[T](q₁, q₂) Input: table T, states q₁, q₂ of T Output: state recognizing $\mathcal{L}(q_1) \cap \mathcal{L}(q_2)$ 1 if $G(q_1, q_2)$ is not empty then return $G(q_1, q_2)$ 2 if $q_1 = q_0 \lor q_2 = q_0$ then return q_0 3 if $q_1 \neq q_0 \land q_2 \neq q_0$ then 4 for all i = 1, ..., m do $r_i \leftarrow inter[T](q_1^{a_i}, q_2^{a_i})$ 5 $G(q_1, q_2) \leftarrow make[T](r_1, ..., r_m)$ 6 return $G(q_1, q_2)$

7 Finite Universes

7 Finite Universes

Fixed-length complement

In principle ill-defined, because the complement of a fixed-length language is not fixed-length.

We implement the fixed-length complement instead.

Can't we just swap the states for the empty language and the language containing the empty word?

Yes and no ...

Fixed-length complement

Equations:

• if $L = \emptyset$, then $\overline{L} = \Sigma^n$, where *n* is the length of *L*;

• if
$$L = \{\epsilon\}$$
, then $\overline{L} = \emptyset$; and

if Ø ≠ L ≠ {ε}, then (L)^a = L^a.
(Observe that w ∈ (L)^a iff aw ∉ L iff w ∉ L^a iff w ∈ L^a.)

comp[T,n](q)

Input: table T, length n, state q of T of length n

Output: state recognizing the fixed-length complement of L(q)

1 **if** G(q) is not empty **then return** G(q)

2 if
$$n = 0$$
 and $q = q_{\emptyset}$ then return q_{ϵ}

3 else if n = 0 and $q = q_{\epsilon}$ then return q_{\emptyset}

4 else
$$/ * n \ge 1 * /$$

5 **for all**
$$i = 1, ..., m$$
 do $r_i \leftarrow comp[T, n-1](q^{a_i})$

6
$$G(q) \leftarrow \mathsf{make}[T](r_1, \ldots, r_m)$$

7 return G(q)

Emptiness

empty[*T*](*q*) **Input:** table *T*, state *q* of *T* **Output:** true if $\mathcal{L}(q) = \emptyset$, false otherwise 1 return $q = q_{\emptyset}$

Universality

- if $L = \emptyset$, then L is not universal;
- if $L = \{\epsilon\}$, then L is universal;
- if $\emptyset \neq L \neq \{\epsilon\}$, then L is universal iff L^a is universal for every $a \in \Sigma$.

univ[T](q) **Input:** table T, state q of T **Output:** true if $\mathcal{L}(q)$ is fixed-length universal, **false** otherwise

- 1 if G(q) is not empty then return G(q)
- 2 if $q = q_{\emptyset}$ then return false
- 3 else if $q = q_{\epsilon}$ then return true
- 4 else $/ * q \neq q_{\emptyset}$ and $q \neq q_{\epsilon} * /$
- 5 **for all** i = 1, ..., m **do** $r_i \leftarrow comp[T](q^{a_i})$
- 6 $G(q) \leftarrow \operatorname{and}(univ[T](r_1), \ldots, univ[T](r_m))$
- 7 return G(q)

Inclusion and Equality

Inclusion. Given two languages $L_1, L_2 \subseteq \Sigma^n$, in order to check $L_1 \subseteq L_2$ we compute $L_1 \cap L_2$ and check whether it is equal to L_1 using the equality check shown next. The complexity is dominated by the complexity of computing the intersection.

 $eq[T](q_1, q_2)$ **Input:** table *T*, states q_1, q_2 of *T* **Output:** true if $\mathcal{L}(q_1) = \mathcal{L}(q_2)$, false otherwise 1 return $q_1 = q_2$

 $eq[T_1, T_2](q_1, q_2)$ **Input:** tables T_1, T_2 , states q_1 of T_1, q_2 of T_2 **Output:** true if $\mathcal{L}(q_1) = \mathcal{L}(q_2)$, false otherwise

- 1 **if** $G(q_1, q_2)$ is not empty **then return** $G(q_1, q_2)$
- 2 **if** $q_1 = q_{\emptyset 1}$ and $q_2 = q_{\emptyset 2}$ **then** $G(q_1, q_2) \leftarrow$ true
- 3 **else if** $q_1 = q_{01}$ and $q_2 \neq q_{02}$ **then** $G(q_1, q_2) \leftarrow false$
- 4 **else if** $q_1 \neq q_{01}$ and $q_2 = q_{02}$ **then** $G(q_1, q_2) \leftarrow$ **false**

5 **else**
$$/ * q_1 \neq q_{01}$$
 and $q_2 \neq q_{02} * /$

6 $G(q_1, q_2) \leftarrow \operatorname{and}(\operatorname{eq}(q_1^{a_1}, q_2^{a_1}), \dots, \operatorname{eq}(q_1^{a_m}, q_2^{a_m}))$

7 return $G(q_1, q_2)$

What if the starting point is an NFA?

• Given: NFA A accepting a fixed-length language and containing no cycles.

Goal: simultaneously determinize and minimize A

- Each state of A accepts a fixed-length language.
- We give an algorithm *state(S*):
 - Input: a subset S of states of A accepting languages of the same length.
 - Output: the state of the master automaton accepting $\bigcup_{q \in S} L(q)$.
- Goal is achieved by calling state({q₀})

Equations:

- if $S = \emptyset$ then $\mathcal{L}(S) = \emptyset$:
- if S ∩ F ≠ Ø then L(S) = {ε}
 if S ≠ Ø and S ∩ F = Ø, then L(S) = ⋃_{i=1}^{n} a_i · L(S_i), where S_i = δ(S, a_i).

state[A](S)**Input:** NFA $A = (Q, \Sigma, \delta, q_0, F)$, set $S \subseteq Q$ **Output:** master state recognizing $\mathcal{L}(S)$

- if G(S) is not empty then return G(S)1
- 2 else if $S = \emptyset$ then return q_{\emptyset}
- 3 else if $S \cap F \neq \emptyset$ then return q_{ϵ}
- else $/ * S \neq \emptyset$ and $S \cap F = \emptyset * /$ 4
- 5 for all $i = 1, \ldots, m$ do $S_i \leftarrow \delta(S, a_i)$
- $G(S) \leftarrow make(state[A](S_1), \dots, state[A](S_m))$: 6
- 7 return G(S)

7 Finite Universes

ΕA