
Lazy DFAs

• We introduce a new data structure: lazy DFAs. 
We construct a lazy DFA for Σ∗݌	with ݉ states 
and 2݉ transitions. 

• Lazy DFAs: automata that read the input from 
a tape by means of a reading head that can 
move one cell to the right or stay put 

• DFA=Lazy DFA whose head never stays put

AFS 6 Some pattern matching 182/431
c©je/ewm



Lazy DFA for Σ∗݌
• By the fundamental property, the DFA ܤ௣ for ݌∗ߑ

behaves from state ܵ௞ as follows:
– If ܽ is a hit, then ஻ߜ ܵ௞ , ܽ = ܵ௞ାଵ , i.e., the DFA 

moves to the next state in the spine.
– If ܽ is a miss, then ߜ஻ ܵ௞ , ܽ = ஻ߜ ܽ,(௞ܵ)ݐ , i.e., the 

DFA moves to the same state it would move to if it 
were in state ݐ(ܵ௞).

• When ܽ is a miss for ܵ௞, the lazy automaton moves to 
state ݐ ܵ௞ without advancing the head. In other words, 
it „delegates“ doing the move to ݐ ܵ௞

• So the lazyDFA behaves the same for all misses.

AFS 6 Some pattern matching 183/431
c©je/ewm



AFS 6 Some pattern matching 184/431
c©je/ewm



• Formally, 
– ஼ߜ ܵ௞, ܽ = (ܵ௞ାଵ,ܴ) if ܽ is a hit
– ஼ߜ ܵ௞, ܽ = ܰ,(௞ܵ)ݐ if ܽ is a miss

• So the lazy DFA has ݉ + 1 states and 2݉
transitions, and can be constructed in ܱ(݉)
space.

AFS 6 Some pattern matching 185/431
c©je/ewm



• Running the lazy DFA on the text takes ܱ ݊ + ݉
time:
– For every text letter we have a sequence of „stay put“ 

steps followed by a „right“ step. Call it a macrostep.
– Let  ௝ܵ೔ be the state after the ݅-th macrostep. The 

number of steps of the ݅-th macrostep is at most 
݆௜ିଵ − ݆௜ + 2 . 

So the total number of steps is at most 

෍ ݆௜ିଵ − ݆௜ + 2 = ݆଴ 	− ݆௡ + 2݊	 ≤ ݉ + 2݊		
௡

௜ୀଵ

AFS 6 Some pattern matching 186/431
c©je/ewm



Computing ݏݏ݅ܯ
• For the ܱ(݉ + ݊) bound it remains to show that the lazy 

DFA can be constructed in ܱ(݉) time.
• Let M݅ݏݏ(݇) be the head of the state reached from ܵ௞ by 

a miss.
• It is easy to compute each of 	ݏݏ݅ܯ 0 , … ݏݏ݅ܯ, ݉ in 
ܱ(݉) time, leading to a ܱ(݊ + ݉ଶ) time algorithm.

• Already good enough for almost all purposes. But, can 
we compute all of ݏݏ݅ܯ 0 , … ݏݏ݅ܯ, ݉ together in 
time ܱ ݉ ?	 Looks impossible!

• It isn‘t  though ...

AFS 6 Some pattern matching 187/431
c©je/ewm



AFS 6 Some pattern matching 188/431
c©je/ewm



• All calls to DeltaB lead  together
to	ܱ(݉) iterations of the while 
loop.

• The call 
݅)ݏݏ݅ܯ)ܤܽݐ݈݁ܦ − 1), ܾ_݅)
executes at most 
݅)ݏݏ݅ܯ − 1)− (݅)ݏݏ݅ܯ) − 1)	
iterations.

AFS 6 Some pattern matching 189/431
c©je/ewm



• Total number of iterations:

෍ ݏݏ݅ܯ ݅ − 1 ݏݏ݅ܯ− ݅ + 1 	
௠

௜ୀଶ
≤ ݏݏ݅ܯ	 1 ݏݏ݅ܯ− ݉ + ݉
≤ ݉

AFS 6 Some pattern matching 190/431
c©je/ewm



7. Finite Universes

When the universe is finite (e.g., the interval [0, 232 − 1] ), all objects can be
encoded by words of the same length.

A language L has length n ≥ 0 if

— L = ∅ and n = 0, or
— L 6= ∅ and every word of L has length n.

L is a fixed-length language if it has length n for some n ≥ 0.

Observe:

— Fixed-length languages contain finitely many words.
— ∅ and {ε} are the only two languages of length 0.

AFS 7 Finite Universes 191/431
c©je/ewm



AFS 7 Finite Universes 192/431
c©je/ewm



AFS 7 Finite Universes 193/431
c©je/ewm



AFS 7 Finite Universes 194/431
c©je/ewm



AFS 7 Finite Universes 195/431
c©je/ewm



Ident. a-succ b-succ
 2       1     0
 3       1     1
 4       0     1
 5       2     2
 6       2     3
  7       4     4

AFS 7 Finite Universes 196/431
c©je/ewm



AFS 7 Finite Universes 197/431
c©je/ewm



Ident. a-succ b-succ
 2       1     0
 3       1     1
 4       0     1
 5       2     2
 6       2     3
  7       4     4

AFS 7 Finite Universes 198/431
c©je/ewm



AFS 7 Finite Universes 199/431
c©je/ewm




