AFS 5 Implementing operations on relations using finite automata
1111 e

AFS 5 Implementing operations on relations using finite automata
1111 e

AFS 5 Implementing operations on relations using finite automata
1111 e

Instead of:

qo1
qo2

we now use

)=

aj

b

]

)

AFS
©je/ewm

aj
Cl
qgor — {411
Cl
by
qo2 — {412

for some letter c1

o = Y
Lbﬂ
Yor 7 T2

fov fowme leH—er G 1

5 Implementing operations on relations using finite automata

AFS 5 Implementing operations on relations using finite automata
1111 e

AFS 5 Implementing operations on relations using finite automata
1111 e

AFS 5 Implementing operations on relations using finite automata
1111 e

6. Some pattern matching

Given
— a word w (the text) of length n, and

— a regular expression p (the pattern) of length m,
determine the smallest number &’ such that there is a subword wy, ;r of w with

Wi k! S L(p) .

Remark: We here minimize the right end of the matching subword. To make a match
unique, one could require e.g., that its length is minimal (or maximal).

AFS 6 Some pattern matching
©je/ewm

AFS
©je/ewm

NFA-based solution

PatternMatchingNFA(t, p)
Input: text7 = a; ...a, € L*, pattern p € £*

Output: the first occurrence of p in 7, or L if no such occurrence exists.

1 A « RegtoNFA(X*p)

2 S «{qo}

3 forallk=0ton—-1do

4 if S N F # 0 then return k

5 S « (S, ar+1)

6 return L

Line 1 takes 0(m?) time, output has 0 (m) states

Loop is executed at most n times
One iteration takes O(s?) time, where s is the number of

states of A
Since s = 0(m), the total runtime is 0(m3 + nm?) , and

O(mm?)form <n.

6 Some pattern matching

DFA-based solution

PatternMatchingDFA(t, p)
Input: texts = a; ...a, € L*, pattern p
Output: the first occurrence of p in #, or L if no such occurrence exists.
1 A « NFAtoDFA(RegtoNFA(Z" p))
2 q<qo
3 forallk=0ton—1do
4 if ¢ € F then return k
5 q < (q, ak+1)
6 return L

Line 1 takes 2°(™ time

e Loopisexecuted at most n times
« One iteration takes constant time
Total runtime is 0(n) + 20(m)

AFS 6 Some pattern matching
©je/ewm

AFS
1111 e

The word case

The pattern p is a word of length m

Naive algorithm: move a window of size m
along the word one letter at a time, and
compare with p after each step. Runtime:
0O(nm)

We give an algorithm with O (n + m) runtime
for any alphabet of size 0 < |Z| <n.

First we explore in detail the shape of the DFA
forXp.

6 Some pattern matching

Obvious NFA for 2*p and p = nano

z

Result of applying NFAtoDFA

AFS 6 Some pattern matching
1111 e

AFS 6 Some pattern matching
1111 e

AFS
©je/ewm

Intuition

« Transitions of the ,,spine* correspond to hits: the next letter
is the one that,,makes progress“ towards nano

 Other transitions correspond to misses, i.e., ,wrong letters*
and ,throw the automaton back"

6 Some pattern matching

AFS
©je/ewm

Observations

e Foreverystate i = 0,1,...,4 of the NFA there is exactly one
state S of the DFA such that i is the largest state of S.

 For every state S of the DFA, with the exception of S = {0}, the
result of removing the largest state is again a state of the DFA.

6 Some pattern matching

AFS
©je/ewm

Observations

e Foreverystate i = 0,1,...,4 of the NFA there is exactly one
state S of the DFA such that i is the largest state of S.

 For every state S of the DFA, with the exception of S = {0}, the
result of removing the largest state is again a state of the DFA.

* Do these properties hold for every pattern p?

6 Some pattern matching

AFS
©je/ewm

Heads and tails, hits and misses

Head of S, denoted h(S) : largest state of S
Tail of S, denoted t(S) : rest of the state
Example: ({3,1,0}) = 3, t({3,1,0}) = {1,0}

Given a state S, the letter leading to the next state in
the ,,spine” is the (unique) hit letter for S

All other letters are miss letters for S

Example: hit for {3,1,0} is 0, whereas n or a are
misses

6 Some pattern matching

AFS
©je/ewm

» Fund. Prop: Let Sy be the k-th state picked from
the worklist during the execution of NFAtoDFA(4,,).
(1) h(Sk) =k,
(2) If k >0, then t(S,) = S; forsome l < k

Proof Idea:

* (1) and (2) hold for S, = {0}.

* For S, we look at §(Sy, a) for each a, where § transition
relation of 4,, .

* Byih.wehave S, ={k}U S, forsome [<k

» We distinguish two cases: a is a hit for S, and a is a miss
for Sy .

6 Some pattern matching

AFS
1111 e

e S, ={k}uUS, forsome [<k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k+1} U §(S;,a)

6 Some pattern matching

e S, ={k}uUS, forsome [<k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k} U S5

Hit: a al
{k+1} U §(S;,a)

_—

Added to the worklist
earlier, and so some S/

m AFS 6 Some pattern matching
©je/ewm

e S, ={k}uUS, forsome [<k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k} u S
Hit: al al
{k+1} U §(S;,a)

AFS 6 Some pattern matching
1111 e

e S, ={k}uUS, forsome [<k

o 8(Sk,a) =8(k,a) U §(S;,a)

{k} u S
Miss: al al
@ U 6(51, Cl)

AFS 6 Some pattern matching
1111 e

AFS
1111 e

S, ={k}us, forsome [<k

8(Sk,a) =6(k,a) U 6(S5;,a)

{k} u 5§
Miss: al al
@ U 6(51, Cl)
Sy

6 Some pattern matching

AFS
©je/ewm

Consequences

Prop: The result of applying NFAtoDFA(A,,), where A,,
is the obvious NFA for Z*p , yields a minimal DFA with
m states and |2 |m transitions.

Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA
yields a O(n + |Z|m) algorithm.

— Good enough for constant alphabet

— Not good enough for |Z| = 0(n)

6 Some pattern matching

