Remarks:

@ Complement and then check for emptiness
— exponential complexity
@ Possible improvements:

— check for emptiness while complementing: on-the-fly-check
— test for subsumption

AFS 4.2 Implementation using NFAs
©je/ewm




A Subsumption Test

We observe that, while doing the conversion to and the universality check for a DFA, it
might not be necessary to store all states.

Definition 32
Let A be a NFA, and let B = NFAtoDFA(A). A state @' of B is minimal if no other
state Q" of B satisfies Q" C Q.

Lemma 33

Let A be an NFA, and let B = NFAtoDFA(A). A is universal iff every minimal state of
B is final.

AFS 4.2 Implementation using NFAs
©je/ewm



Proof.

Since A and B recognize the same language, A is universal iff B is universal. So A is
universal iff every state of B is final. But a state of B is final iff it contains some final
state of A, and so every state of B is final iff every minimal state of B is final. 0

AFS 4.2 Implementation using NFAs

©je/ewm




AFS
1111 e

4.2 Implementation using NFAs




AFS
1111 e

4.2 Implementation using NFAs




Can this approach be correct?

After all, removing a non-minimal state, we might be preventing the addition of other
minimal states in the future!?

AFS 4.2 Implementation using NFAs
©je/ewm




Lemma 34
Let A= (Q,%,0,q, F) be an NFA, and let B = NFAtoDFA(A). After termination of
UnivNFA(A), the set Q contains all minimal states of B.

AFS 4.2 Implementation using NFAs
©je/ewm




Proof.
Assume the contrary.
Then B has a shortest path @1 — Q2 --- Q-1 — @, such that, after termination,

o Ql S Q: Qn ¢ Q

@ (), is minimal
Since the path is shortest, Q2 ¢ Q, and so when UnivNFA processes @)1, it does not
add Q2. This can only be because UnivNFA already added some Q) C Q2.

AFS 4.2 Implementation using NFAs
©je/ewm




Proof (cont'd):

But then B has a path Q5 — Q5 - - -
Q! = Qn and is minimal.

/
n—1

Thus, the path Q) — -+ — @/, satisfies

— @), with Q), C Q. Since @, is minimal,

° Q)€ Q, and
@ Q) is minimal.

This contradicts our assumption that Q1 — --- — (), is as short as possible. ]
AFS 4.2 Implementation using NFAs

©je/ewm




Inclusion and equality

Theorem 35
The inclusion problem for NFAs is PSPACE-complete.

Proof.

If, given tw o NFAs A; and As, we want to test whether L(A;) C L(Aj3) or,
equivalently, L(A;) N L(A3) = 0. The negation of the latter can easily be checked
(using polynomial space) by guessing a word w (of length at most exponential in the

size of A; and Ag) such that w is recognized by A; but not As.

PSPACE-hardness on the other hand follows since an NFA A is universal iff
L(A) = X%, i.e., the universality problem reduces to the inclusion problem.

AFS 4.2 Implementation using NFAs
©je/ewm




AFS
1111 e

4.2 Implementation using NFAs




Further optimization: subsumption test

Definition 36
Let Ay, Ay be NFAs, and let By = NFAtoDFA(A3). A state [q1, Q2] of [Ay, Ba] is
minimal if no other state [¢}, Q%] satisfies ¢f = ¢1 and Q% C Qo.

Lemma 37
LL(A;) C L(As9) iff every minimal state [q1, Q2] of [A1, Bo] satisfying q1 € Fy also
satisfies Qo N Fy # ().

Proof.

Since Ay and Bj recognize the same language, L(A1) C L(As) iff L(A1) N L(A3) =10
iff L(A1) N L(Bg) = 0 iff [Ay, Bs] has a state [¢1, Q2] such that ¢; € F; and

Q2 N Fy = (). But [A1, B| has some state satisfying this condition iff it has some
minimal state satisfying it. O

AFS 4.2 Implementation using NFAs
©je/ewm



Algorithm InclNFA(A;, As):
Input: NFAs A = (Q1,%,01,q01, F1), Az = (Q2,%, 52, qo2, [2)
Output: true if L(A;) C L(Ag), false otherwise
Q=10
W= {[go1, {q02}] }
while W # () do
pick [q1,Q2] from W
if 1 € F1 and Q2 N Fy, = () then return false fi
add [q1,Q2] to Q
for all a € X,¢] € 01(q1,a) do
QY = 62(Q2, a)
if WUQ contains no [¢f,Q5] s.t. ¢/ =¢| and Qf C Q) then
add [q;,@5] to W
fi
return true

AFS 4.2 Implementation using NFAs
©je/ewm




AFS
1111 e

4.2 Implementation using NFAs




Important special case:

If Ay is an NFA, but Ay (already) is a DFA, then

@ complementing Az is now trivial

@ we obtain a running time O(n? - ny)

Remark: To check for equality, we just check inclusion in both directions. To obtain
PSPACE-hardness for equality, just observe the universality problem as above.

AFS 4.2 Implementation using NFAs
©je/ewm






