4. Implementing operations on sets using finite automata

4.1 Implementation using DFAs

Recall:

We assume that each object (input, automaton, etc.) is encoded by one word.

We observe:

Membership	:	trivial, linear for fixed automaton
		uniform word problem: low polynomial
Complement	:	trivial, swap final and non-final states
		linear (or even constant) time

Also consider these set operations:

The product construction or pairing for DFAs

Two DFAs run synchronously in parallel, an input word is accepted iff both automata accept it.

Theorem 27

Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be two DFAs. Then the product automaton or pairing $M = [M_1, M_2]$ of M_1 and M_2 , defined by

$$M := (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F_1 \times F_2)$$

with $\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_2, a))$ for all $q_1 \in Q_1, q_2 \in Q_2$ and $a \in \Sigma$, is a DFA recognizing $L(M_1) \cap L(M_2)$.

Proof. Induction on |w|. We have:

$$\begin{array}{lll} w \in L(M) & \Leftrightarrow & \hat{\delta}((s_1,s_2),w) \in F_1 \times F_2 \\ & \Leftrightarrow & (\hat{\delta}_1(s_1,w),\hat{\delta}_2(s_2,w)) \in F_1 \times F_2 \\ & \Leftrightarrow & \hat{\delta}_1(s_1,w) \in F_1 \wedge \hat{\delta}_2(s_2,w) \in F_2 \\ & \Leftrightarrow & w \in L(M_1) \wedge w \in L(M_2) \\ & \Leftrightarrow & w \in L(M_1) \cap L(M_2) \,. \end{array}$$

Question: Does the pairing construction (for intersection) also work for NFAs?

Definition 28 The reversal(mirror) of a word $w = a_1 \cdots a_n$ is

$$w^R := a_n \cdots a_1.$$

The reversal of a language L is

$$L^R := \{w^R; w \in L\}.$$

Theorem 29 If L is a regular language, so is L^R .

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA with L = L(M). We construct an ϵ -NFA $N = (Q \uplus \{q'_0\}, \Sigma, \delta', q'_0, \{q_0\})$ as follows:

- we reverse all state transitions, i.e., $\delta(q, a) = p$ iff $q \in \delta'(p)$;
- we create the new start state q'_0 of N, with ϵ -transitions to all $f \in F$;
- q_0 becomes the (only) final state of N.

Following the state transitions of M on some arbitrary input $w\in \Sigma^*$ backwards, we easily see that

$$L(N) = L^R.$$

A generic algorithm

$$L_1\widehat{\odot}L_2 \quad = \quad \{w \in \Sigma^* \mid (w \in L_1) \odot (w \in L_2)\}$$

Language operation	$b_1 \odot b_2$
Union	$b_1 \lor b_2$
Intersection	$b_1 \wedge b_2$
Set difference $(L_1 \setminus L_2)$	$b_1 \wedge \neg b_2$
Union Intersection Set difference $(L_1 \setminus L_2)$ Symmetric difference $(L_1 \setminus L_2 \cup L_2 \setminus L_1)$	$b_1 \Leftrightarrow \neg b_2$

 $BinOp[\odot](A_1, A_2)$ **Input:** DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** DFA $A = (Q, \Sigma, \delta, q_0, F)$ with $\mathcal{L}(A) = \mathcal{L}(A_1) \odot \mathcal{L}(A_2)$ 1 $O \leftarrow \emptyset; F \leftarrow \emptyset$ 2 $q_0 \leftarrow [q_{01}, q_{02}]$ 3 $W \leftarrow \{a_0\}$ 4 while $W \neq \emptyset$ do 5 pick $[q_1, q_2]$ from W add $[q_1, q_2]$ to O 6 7 if $(q_1 \in F_1) \odot (q_2 \in F_2)$ then add $[q_1, q_2]$ to F 8 for all $a \in \Sigma$ do 9 $q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$ if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W 10 11 add $([q_1, q_2], a, [q'_1, q'_2])$ to δ 12 return $(Q, \Sigma, \delta, q_0, F)$

Observation:

- The product automaton/pairing of two DFAs with n_1 resp. n_2 states has (in normal form) $O(n_1 \cdot n_2)$ states.
- Hence, for DFAs with n_1 resp. n_2 states and an alphabet Σ with k letters, the operations union, intersection, etc. can be carried out in $O(k \cdot n_1 \cdot n_2)$ time.

Language tests

Let A, A_1 , and A_2 be DFAs, with L = L(A), $L_1 = L(A_1)$, and $L_2 = L(A_2)$ the languages recognized by them, respectively. Note that we assume that all these automata are in normal form!

Then we have

- Emptiness: L is empty iff A has no final states.
- Universality: $L = \Sigma^*$ iff A has only final states.
- Inclusion: $L_1 \subseteq L_2$ iff $L_1 \setminus L_2 = \emptyset$.
- Equality: $L_1 = L_2$ iff $L_1 riangle L_2 = \emptyset$.

InclDFA(A_1, A_2) Input: DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ Output: true if $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$, false otherwise

- 1 $Q \leftarrow \emptyset$; 2 $W \leftarrow \{[q_{01}, q_{02}]\}$ 3 while $W \neq \emptyset$ do 4 pick $[q_1, q_2]$ from W5 add $[q_1, q_2]$ to Q6 if $(q_1 \in F_1)$ and $(q_2 \notin F_2)$ then return false 7 for all $a \in \Sigma$ do 8 $q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$ 9 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 10 return true

4.2 Implementation using NFAs

Recall:

Complement(X) : returns $U \setminus X$ **Intersection**(X, Y) : returns $X \cap Y$ Union(X, Y) $\mathsf{Empty}(X)$

Member(x, X) : returns **true** if $x \in X$, **false** otherwise : returns $X \cup Y$: returns **true** if $X = \emptyset$, **false** otherwise **Universal**(X) : returns **true** if X = U, **false** otherwise **Included**(X, Y) : returns **true** if $X \subseteq Y$, **false** otherwise **Equal**(X, Y) : returns **true** if X = Y, **false** otherwise

Membership

Prefix read	W
ϵ	$\{q_0\}$
a	$\{q_2\}$
aa	$\{q_2, q_3\}$
aaa	$\{q_1, q_2, q_3\}$
aaab	$\{q_2, q_3\}$
aaabb	$\{q_2, q_3, q_4\}$
aaabba	$\{q_1, q_2, q_3, q_4\}$

Mem[A](w) **Input:** NFA $A = (Q, \Sigma, \delta, q_0, F)$, word $w \in \Sigma^*$, **Output:** true if $w \in \mathcal{L}(A)$, false otherwise

1
$$W \leftarrow \{q_0\};$$

2 while $w \neq \varepsilon$ do

3
$$U \leftarrow \emptyset$$

4 for all $q \in W$ do

5 **add**
$$\delta(q, head(w))$$
 to U

return $(W \cap F \neq \emptyset)$

$$6 \quad W \leftarrow U$$

8

7
$$w \leftarrow tail(w)$$

Complexity:

while loop executed |w| times for loop executed at most |Q| times each execution takes O(|Q|) time

Overall: O(|w||Q|^2) time

Complement:

- Swapping final and non-final states does not work.
- Solution: convert to DFA and then swap states.
- Problem: exponential blow-up of size of automaton! Hence try to avoid this whenever possible!
- However, in the worst case there is no better way: There are NFAs with n states such that any minimal NFA for their complement has $\Theta(2^n)$ states!

Union and intersection:

The product/pairing construction still works for union and intersection, with the same complexity, but (of course(!)) not for set difference or other non-monotonic operations.

There is a better construction for union (see a few slides down), but not for intersection.

IntersNFA(A_1, A_2) **Input:** NFA $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** NFA $A_1 \cap A_2 = (Q, \Sigma, \delta, q_0, F)$ with $\mathcal{L}(A_1 \cap A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$

- 1 $Q \leftarrow \emptyset; F \leftarrow \emptyset$
- 2 $q_0 \leftarrow [q_{01}, q_{02}]$
- 3 $W \leftarrow \{ [q_{01}, q_{02}] \}$
- 4 while $W \neq \emptyset$ do
- 5 **pick** $[q_1, q_2]$ from W
- 6 **add** $[q_1, q_2]$ to Q
- 7 if $q_1 \in F_1$ and $q_2 \in F_2$) then add $[q_1, q_2]$ to F
- 8 for all $a \in \Sigma$ do
- 9 **for all** $q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a)$ **do**
- 10 **if** $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 11 **add** $([q_1, q_2], a, [q'_1, q'_2])$ to δ
- 12 **return** $(Q, \Sigma, \delta, q_0, F)$

For the complexity, observe that in the worst case the algorithm must examine all pairs $[t_1, t_2]$ of transitions of $\delta_1 \times \delta_2$, but every pair is examined at most once. So the runtime is $\mathcal{O}(|\delta_1||\delta_2|)$.

4.2 Implementation using NFAs

LEA