3.2 Construction of Minimal DFAs

Theorem 21

For a given regular language L, let A be the DFA constructed according to the
Myhill-Nerode theorem. Then A has, among all DFAs for L, a minimal number of
states.

Proof.
Let A= (Q,%,,q0, F) mit L(A) = L. Then

T =41 & S(qo,iﬂ) = S(Qan)

defines an equivalence relation which refines =;..
Thus: |Q| = index(=4) > index(=1) = number of states of the Myhill-Nerode
automaton. O
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Algorithm for Constructing a Minimal DFA
Input: A(Q,X,6,q0,F) DFA (L = L(A))
Output: equivalence relation on Q.

@ ensure that A is in normal form
@ mark all pairs {g;,q;} € Q* with

¢ € Fand g; ¢ Fresp.qi¢ Fandg;€F.
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@ for all unmarked pairs {g;, q;} € Q?, ¢; # g; do
if (3a € ¥)[{d(gi,a),0(gj,a)} is marked] then
mark {g,q;};
for all {q,q'} in {gi,q;}'s list do
mark {q,q¢'} and remove it from list;
do this recursively for all pairs in the list of {¢,¢'}, and so on.
od
else
for all a € ¥ do
if 9(gi,a) # (g, a) then
enter {g;,q;} into the list of {§(g;,a),d(g;,a)}
fi
od
fi
od
© Output: ¢ equivalent to ¢’ < {q,¢'} not marked.
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Theorem 22
The above algorithm constructs a minimal DFA for L(A).

Proof.
Let A" = (Q',X,¢, ¢, F') be the DFA constructed using the equivalence classes
determined by the algorithm.

Obviously L(A) = L(A").
We have: {q,q’'} becomes marked iff
(Fw € £9[6(q,w) € FAd(¢,w) ¢ F or vice versal,

as can be seen by a simple induction on |w].

Thus: The number of states of A’ (viz., |Q’|) equals the index of =. O
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Example 23

automaton A:

AFS
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automaton A’:
L(A') = 0°10*

qo| q1| q2| 43| 44| g5
o| /| /1
Q [/
e | x| x| /I /1 /]/
a3 | X| X ANaN;
Qs | X| X /1)
g5 | x| x| x| x| x|/
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Theorem 24

Let A= (Q,X%,0,q0, F) be a DFA. Then the running time for the above minimization
algorithm is O(|Q|?|%]).

Proof.

For each a € X, each position in the table is visited only a constant number of
times. 0
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Remark:

The above minimization algorithm
@ starts with a very coarse partition of the state set (), containing =,
@ splits a class of the partition whenever it has to
@ does this as long as any further splitting might be possible

e finally forms the quotient automaton defined by the final partition of @ (which is
a coarsening of =4)

AFS 3.2 Construction of Minimal DFAs
©je/ewm




3.3 Minimizing NFAs

We first observe that a minimal NFA need not be unique (unlike the situation for
DFAs):
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Minimal NFAs are hard to compute:

Theorem 25
The following decision problem is PSPACE-complete: given an NFA A and a number
k > 1, is there an NFA with at most k states which is equivalent to A.

No proof.
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However, quite often we can still compute a partition of the state set ) of a given
NFA which leads to a reduction of the number of states.

Example 26

a,b a,b a,b
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Constructing the quotient automaton, we obtain

a,b

a,b
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Computing a suitable partition

* |dea: use the same algorithm as for DFA, but
with new notions of unstable block and block
splitting.

* We must guarantee:

after termination, states of a block
recognize the same language

or, equivalently
after termination, states recognizing
different languages belong to different
blocks
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It is not hard to see that the construction given above results in an NFA which is
equivalent to the original NFA.

However:
The result might not be minimal:

or
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The result is finer than the language partition:
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