2.3 Regular expressions to NFA-¢
For the RE (a*b* + ¢)*d, we intuitively construct the following NFA-e:

AFS 2.3 Regular expressions to NFA-e
©je/ewm

Formally, we have the following rules:

AFS 2.3 Regular expressions to NFA-e
©je/ewm

AFS
1111 e

2.3 Regular expressions to NFA-e

AFS
1111 e

2.3 Regular expressions to NFA-e

AFS
1111 e

2.3 Regular expressions to NFA-e

AFS
1111 e

2.3 Regular expressions to NFA-e

AFS
1111 e

2.3 Regular expressions to NFA-e

AFS
1111 e

2.3 Regular expressions to NFA-e

And finally, removing e-transitions, we obtain:

d

AFS 2.3 Regular expressions to NFA-e
©je/ewm

2.4 NFA-¢ to regular expressions

Preprocessing:

AFS 2.4 NFA-€ to regular expressions
©je/ewm

Processing:

AFS
©je/ewm

2.4 NFA-€ to regular expressions

Postprocessing (if necessary):

AFS
©je/ewm

2.4 NFA-€ to regular expressions

3. Minimization and Reduction

In this section, we are going to look at the problem of constructing minimal size DFA’s
for a given regular language, or reducing the size of an NFA without changing the
language it accepts.

AFS 3.0 NFA-€ to regular expressions
©je/ewm

Example 13

AFS
©je/ewm

3.0 NFA-€ to regular expressions

3.1 Residual

Definition 14
Let L C >* be a language, and w € X* a word. The w-residual of L is the language

LY :={ueX*; wuelL}.
A language L' C X* is a residual of L if L' = L" for at least one w € X*.

We note that:

AFS 3.1 Residual
©je/ewm

Relation between residuals and states:
Let A be a DFA and ¢ a state of A.

Definition 15
The state-language L a(q) (or just L(q)) is the language recognized by A with ¢ as
initial state.
We remark:
e State-languages are residuals. For every state q of A, L(q) is a residual of L(A).
@ Residuals are state-languages. For every residual R of L(A), there is a state ¢
such that R = L(q).

AFS 3.1 Residual
©je/ewm

Important consequence:

A regular language has finitely many residuals,
and, equivalently,

languages with infinitely many residuals are not regular.

AFS 3.1 Residual
©je/ewm

Canonical DFA for a regular language:

Definition 16
Let L C >* be a formal language. The canonical DFA for L is the DFA
Cr:=(Qr,%,0r,q0rL, F1,) given by

@ (1 is the set of residuals of L, i.e.,, Qp = {L"; w € ¥*}

@ §(K,a) =K forevery K € Qr anda € X

@ qr =1L, and

o F ={K €Qr;ec€e K}

AFS 3.1 Residual
©je/ewm

Theorem 17
The canoncial DFA for L recognizes L.

Proof.
Let w € ¥*. We show by induction on |w| that w € L iff w € L(Cy).

eclL (w=¢€)

< LeFy (definition of FT)

— qrL€elyL (qor = L)

< €€ L(CL) (gor is the initial state of C7)
aw' € L

= w el (definition of L%

<= w' € L(Cra) (induction hypothesis)

< aw' € L(CL) (5L(L, a) = La)

AFS 3.1 Residual
©je/ewm

Definition 18
Let L C ¥* be a formal language. Define the relation =7 C ¥* x ¥* by

r=py<e VzeXzze L yz e L

Lemma 19
=, Is a right-invariant equivalence relation.

Here right-invariant means:

x=py= xu=g yu for all u.

Proof.
Clear! O

AFS 3.1 Residual
©je/ewm

Theorem 20 (Myhill-Nerode)
Let L. C 3*. Then the following are equivalent:

Q@ L is regular
@ =, has finite index (= number of equivalence classes)

© L is the union of some of the finitely many equivalence classes of =y .

AFS 3.1 Residual
©je/ewm

Proof.
(1)=(2):

Let L = L(A) for some DFA A = (Q, X%, 9, qo, F).

Then we have R R
5((]0755) = 6((]07 y) = T=LY.

Thus there are at most as many equivalence classes as A has states.

AFS
©je/ewm

Proof.
(2)=(3):

Let [z] be the equivalence class of z, y € [z] and x € L.
Then, by the definition of =p, we have:

yeL

AFS
©je/ewm

Proof.
(3)=(1):
Define A" = (Q', X, 0, ¢, F') with

Q = {fa]yze¥} (Q finite!)

g = [d
§([x],a) := [za] VxeX*;a€¥X (consistent!)
F' = {[z]; x €L}

Then:
L(A') =L

AFS 3.1 Residual
©je/ewm

