
1.3 Examples

Example 6

This is a DFA recognizing the multiples of 3, in binary notation:

The states, from left to right, correspond to the residue mod 3 of the binary number
read so far. If this residue is r and the next digit being read is b, then the new residue
is 2r + b mod 3, as reflected by the arrows in the above diagram.
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Example 7

This is a DFA recognizing the nonnegative solutions of 2x− y ≤ 2 in binary (with least
significant digit first):
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Example 8

This is a DFA recognizing the (initial or intermediate) states of the program leading to
termination. The inputs to the DFA are (in order) the number of the current line in the
program, the value of the (binary) variable x, and the value of the (binary) variable y:
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Definition 9
Let A = (Q,Σ, δ, q0, F be an automaton. A state q ∈ Q is reachable from q′ ∈ Q if

q = q′ or if there exists a run q′
a1−−−−→ . . .

an−−−−→ q on some input a1 . . . an ∈ Σ∗. A is
in normal form if every state is reachable from the initial state.

Unless we say otherwise, we always assume that automata are in normal form!
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2. Conversion algorithms

2.1 NFA to DFA, power set construction

Theorem 10
Let L be the language accepted by some nondeterministic finite automaton. Then we
can effectively construct a DFA M with

L = L(M) .
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Proof.
Let N = (Q,Σ, δ, S, F ) be an NFA.

Define

1 M ′ := (Q′,Σ, δ′, q′0, F
′)

2 Q′ := P(Q) (P(Q) = 2Q power set of Q)

3 δ′(Q′′, a) :=
⋃

q′∈Q′′ δ(q
′, a) for all Q′′ ∈ Q′, a ∈ Σ

4 q′0 := S

5 F ′ := {Q′′ ⊆ Q; Q′′ ∩ F 6= ∅}

Thus

NFA N : Q Σ δ S F
DFA M ′: 2Q Σ δ′ S F ′
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Proof (cont’d):

We have:
w ∈ L(N) ⇔ δ̂(S,w) ∩ F 6= ∅

⇔ δ̂′(q′0, w) ∈ F ′
⇔ w ∈ L(M ′).

Here, δ̂ denotes the canonical extension of δ to words w ∈ Σ∗, and analogously δ̂′.

The corresponding algorithm for converting an NFA into a DFA is called subset
construction, power set construction, or Myhill construction.

Remark: Of course, the algorithm should also put the NFA it constructs into normal
form.
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Example 11

NFA:

1 2 3 4
b a

a, b

a, b

1

DFA:

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
a

ba

a

b

b

1
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2.2 NFA-e to DFA

Consider the NFA-ε

ε ε

0 1 2

1

accepting L(0∗1∗2∗).
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We perform the following algorithm NFA-εtoNFA:

Input: NFA-ε A = (Q,Σ, δ, S, F )
Output: NFA B = (Q′,Σ, δ′, q′0, F

′) with L(A) = L(B)
Q′0 := S; Q′ := S; δ′ := ∅; F ′ := F ∩ S
δ′′ := ∅; W := {(q, α, q′) ∈ δ | q ∈ S}
while W 6= ∅ do

pick (q1, α, q2) from W
if α 6= ε then

add q2 to Q′; add (q1, α, q2) to δ′; if q2 ∈ F then add q2 to F ′ fi
for all q3 ∈ δ(q2, ε) do if (q1, α, q3) 6∈ δ′ then add (q1, α, q3) to W fi
for all a ∈ Σ, q3 ∈ δ(q2, a) do if (q2, a, q3) 6∈ δ′ then add (q2, a, q3) to W fi

else co α = ε oc
add (q1, α, q2) to δ′′; if q2 ∈ F then add q1 to F ′ fi
for all β ∈ Σ ∪ {ε}, q3 ∈ δ(q2, β) do

if (q1, β, q3) 6∈ δ′ ∪ δ′′ then add (q1, β, q3) to W fi
fi

od
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Example 12

ε ε

0 1 2

1

28 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

ε ε

0 1 2

(a) NFA-ε accepting L(0∗1∗2∗)

ε ε

0 1 2

1, 20, 1

0, 1, 2

(b) After saturation

0 1 2

0, 1 1, 2

0, 1, 2

(c) After marking the initial state and final and removing all ε-transitions.

Figure 2.11: Conversion of an NFA-ε into an NFA by shortcutting ε-transitions.
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