Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Complexity Theory

Due date: June 12, 2014 before class!

Problem 1 (10 Points)

Prove that the following language is **PSPACE**-complete: IN-PLACE ACCEPTANCE: Given a Turing machine M and an input x, does M accept x without ever leaving the first |x| + 1 symbols on its strings?

Problem 2 (10 Points)

Recall the definition of alternating Turing machines (ATM) with control states partitioned into sets Q_{\forall} and Q_{\exists} , and the corresponding class **AP**.

- 1. Show that a language $L \in \mathbf{AP}$ decided by an *existential* ATM (i.e. $Q_{\forall} = \emptyset$) is in \mathcal{NP} .
- 2. Show that a language $L \in \mathbf{AP}$ decided by an *universal* ATM (i.e. $Q_{\exists} = \emptyset$) is in $co\mathcal{NP}$.
- 3. Show that $\mathbf{AP} = \mathbf{coAP}$.
- 4. Show that **PSPACE** is contained in **AP** by showing that $TQBF \in AP$.

Problem 3 (10 Points)

Prove $\mathbf{AL} = \mathcal{P}$.

Problem 4 (10 Points)

A language L is called *downward self-reducible* if it can be solved by a polynomial-time oracle Turing machine with an oracle for L, however in such a way that on input $x \in \{0, 1\}^n$ the machine only asks queries of length *strictly less* than n.

Prove that if L is downward self-reducible, then $L \in \mathbf{PSPACE}$.