Lemma 92

$$I := \int_{-\infty}^{\infty} e^{-x^2/2} \, \mathrm{d} \, x = \sqrt{2\pi}.$$

Beweis:

Wir berechnen zunächst I^2 :

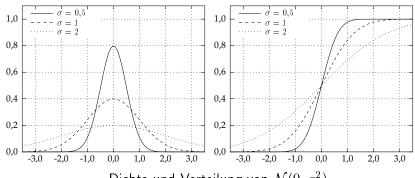
$$I^{2} = \left(\int_{-\infty}^{\infty} e^{-x^{2}/2} dx \right) \left(\int_{-\infty}^{\infty} e^{-y^{2}/2} dy \right)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2}+y^{2})/2} dx dy.$$

Wir gehen nun zu Polarkoordinaten über und setzen $x:=r\cos\phi$ und $y:=r\sin\phi$. Dann ist

$$\left| egin{array}{c|c} rac{\partial x}{\partial r} & rac{\partial y}{\partial r} \\ rac{\partial x}{\partial \phi} & rac{\partial y}{\partial \phi} \end{array}
ight| = \left| egin{array}{c|c} \cos \phi & \sin \phi \\ -r \sin \phi & r \cos \phi \end{array}
ight| = r(\cos^2 \phi + \sin^2 \phi) = r$$

und wir erhalten

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}/2} r \, dr \, d\phi = \int_{0}^{2\pi} \left[-e^{-r^{2}/2} \right]_{0}^{\infty} d\phi$$
$$= \int_{0}^{2\pi} 1 \, d\phi = 2\pi.$$



Dichte und Verteilung von $\mathcal{N}(0,\sigma^2)$

Satz 93 (Lineare Transformation der Normalverteilung)

Sei X eine normalverteilte Zufallsvariable mit $X \sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt für beliebiges $a \in \mathbb{R} \setminus \{0\}$ und $b \in \mathbb{R}$, dass Y = aX + b normalverteilt ist mit $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Beweis:

Wir betrachten zunächst den Fall "a > 0":

$$\Pr[Y \le y] = \Pr[aX + b \le y] = \Pr\left[X \le \frac{y - b}{a}\right]$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \cdot \int_{-\infty}^{(y - b)/a} \exp\left(-\frac{(u - \mu)^2}{2\sigma^2}\right) du.$$

Nach der Substitution u = (v - b)/a und d $u = (1/a) \cdot dv$ erhalten wir

$$\Pr[Y \le y] = \frac{1}{\sqrt{2\pi}a\sigma} \cdot \int_{-\infty}^{y} \exp\left(-\frac{(v - a\mu - b)^{2}}{2a^{2}\sigma^{2}}\right) dv.$$

Also $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$. Für a < 0 verläuft der Beweis analog.

Sei also X eine beliebige $\mathcal{N}(\mu, \sigma^2)$ -verteilte Zufallsvariable X und $Y := \frac{X - \mu}{\sigma}$.

Dann ist nach Satz 93 Y $\mathcal{N}(0,1)$ -verteilt. Y heißt auch normiert.

Ferner gilt

$$\Pr[a < X \le b] = \Pr\left[\frac{a - \mu}{\sigma} < Y \le \frac{b - \mu}{\sigma}\right]$$
$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

Satz 94

X sei $\mathcal{N}(0,1)$ -verteilt. Dann gilt

$$\mathbb{E}[X] = 0$$
 und $\operatorname{Var}[X] = 1$.

Beweis:

$$\mathbb{E}[X] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \cdot \exp\left(-\frac{x^2}{2}\right) dx.$$

Da der Integrand punktsymmetrisch zu (0,0) ist, folgt $\mathbb{E}[X]=0$.

Mittels Lemma 92 und durch partielle Integration erhalten wir

$$\sqrt{2\pi} = \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx$$

$$= \underbrace{x \exp\left(-\frac{x^2}{2}\right)\Big|_{-\infty}^{\infty}}_{= 0} + \int_{-\infty}^{\infty} x^2 \cdot \exp\left(-\frac{x^2}{2}\right) dx$$

Daraus folgt, dass $\mathbb{E}[X^2]=1$ ist und somit $\mathrm{Var}[X]=\mathbb{E}[X^2]-\mathbb{E}[X]^2=1$.

Satz 95

X sei $\mathcal{N}(\mu, \sigma^2)$ -verteilt. Dann gilt

$$\mathbb{E}[X] = \mu \text{ und } \operatorname{Var}[X] = \sigma^2$$
.

Beweis:

 $Y:=rac{X-\mu}{\sigma}$ ist standardnormalverteilt. Ferner gilt gemäß der Rechenregeln für Erwartungswert und Varianz

$$\mathbb{E}[X] = \mathbb{E}[\sigma Y + \mu] = \sigma \cdot \mathbb{E}[Y] + \mu = \mu$$

und

$$Var[X] = Var[\sigma Y + \mu] = \sigma^2 \cdot Var[Y] = \sigma^2.$$

2.3 Exponentialverteilung

Die Exponentialverteilung ist in gewisser Weise das kontinuierliche Analogon zur geometrischen Verteilung. Wie die geometrische Verteilung ist sie "gedächtnislos". Sie spielt daher vor allem bei der Modellierung von Wartezeiten eine große Rolle.

Definition 96

Eine Zufallsvariable X heißt exponentialverteilt mit dem Parameter $\lambda,\ \lambda>0,$ wenn sie die Dichte

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda x} & \text{falls } x \ge 0, \\ 0 & \text{sonst} \end{cases}$$

besitzt.

Für die entsprechende Verteilungsfunktion gilt (für $x \ge 0$)

$$F(x) = \int_0^x \lambda \cdot e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_0^x = 1 - e^{-\lambda x}.$$

Für x < 0 gilt selbstverständlich F(x) = 0.

$$\mathbb{E}[X] = \int_0^\infty t \cdot \lambda \cdot e^{-\lambda t} \, \mathrm{d} \, t$$
$$= \left[t \cdot (-e^{-\lambda t}) \right]_0^\infty + \int_0^\infty e^{-\lambda t} \, \mathrm{d} \, t$$
$$= 0 + \left[-\frac{1}{\lambda} \cdot e^{-\lambda t} \right]_0^\infty = \frac{1}{\lambda} \, .$$

Analog erhalten wir

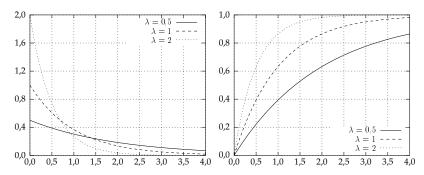
$$\mathbb{E}[X^2] = \int_0^\infty t^2 \cdot \lambda \cdot e^{-\lambda t} \, \mathrm{d} t$$

$$= \left[t^2 \cdot (-e^{-\lambda t}) \right]_0^\infty + \int_0^\infty 2t \cdot e^{-\lambda t} \, \mathrm{d} t$$

$$= 0 + \frac{2}{\lambda} \cdot \mathbb{E}[X] = \frac{2}{\lambda^2}$$

und somit

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{1}{\lambda^2}.$$



Dichte und Verteilung der Exponentialverteilung

2.3.1 Eigenschaften der Exponentialverteilung

Satz 97 (Skalierung exponentialverteilter Variablen)

Sei X eine exponentialverteilte Zufallsvariable mit dem Parameter λ . Für a>0 ist die Zufallsvariable Y := aX wieder exponentialverteilt mit dem Parameter λ/a .

Beweis:

$$F_Y(x) = \Pr[Y \le x] = \Pr[aX \le x]$$
$$= \Pr\left[X \le \frac{x}{a}\right] = F_X\left(\frac{x}{a}\right)$$
$$= 1 - e^{-\frac{\lambda x}{a}}.$$

Gedächtnislosigkeit

Satz 98 (Gedächtnislosigkeit)

Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich \mathbb{R}^+ ist genau dann exponentialverteilt, wenn für alle x,y>0 gilt, dass

$$\Pr[X > x + y \mid X > y] = \Pr[X > x].$$
 (*)

Beweis:

Sei X exponentialverteilt mit Parameter λ . Dann gilt

$$\Pr[X > x + y \mid X > y] = \frac{\Pr[X > x + y, X > y]}{\Pr[X > y]}$$

$$= \frac{\Pr[X > x + y]}{\Pr[X > y]}$$

$$= \frac{e^{-\lambda(x+y)}}{e^{-\lambda y}} = e^{-\lambda x} = \Pr[X > x].$$

Sei umgekehrt X eine kontinuierliche Zufallsvariable, die die Gleichung (*) erfüllt. Wir definieren $g(x):=\Pr[X>x]$. Für x,y>0 gilt

$$\begin{split} g(x+y) &= \Pr[X > x+y] \\ &= \Pr[X > x+y \mid X > y] \cdot \Pr[X > y] \\ &= \Pr[X > x] \cdot \Pr[X > y] = g(x)g(y) \,. \end{split}$$

Daraus folgt durch wiederholte Anwendung

$$g(1) = g\Big(\underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{n-\text{mal}}\Big) = \left(g\Big(\frac{1}{n}\Big)\right)^n \text{ für alle } n \in \mathbb{N}$$

und somit insbesondere auch $g(1/n) = (g(1))^{1/n}$.

Da X nur positive Werte annimmt, muss es ein $n \in \mathbb{N}$ geben mit g(1/n) > 0. Wegen $0 < g(1) \le 1$ muss es daher auch ein $\lambda \ge 0$ geben mit $g(1) = e^{-\lambda}$.

Nun gilt für beliebige $p, q \in \mathbb{N}$

$$g(p/q) = g(1/q)^p = g(1)^{p/q},$$

und somit $g(r) = e^{-\lambda r}$ für alle $r \in \mathbb{Q}^+$.

Aufgrund der Stetigkeit folgt daraus

$$g(x) = e^{-\lambda x}.$$

Beispiel 99

Über das Cäsium-Isotop $^{134}_{55}$ Cs ist bekannt, dass es eine mittlere Lebensdauer von ungefähr 3,03 Jahren oder $1,55\cdot 10^6$ Minuten besitzt. Die Zufallsvariable X messe die Lebenszeit eines bestimmten $^{134}_{55}$ Cs-Atoms. X ist exponentialverteilt mit dem Parameter

$$\lambda = \frac{1}{\mathbb{E}[X]} = \frac{1}{1,55 \cdot 10^6} \approx 0.645 \cdot 10^{-6} \ \left[\frac{1}{\text{min}} \right]$$

Da λ den Kehrwert einer Zeit als Einheit besitzt, spricht man von der Zerfallsrate. Auch bei anderen Anwendungen ist es üblich, λ als Rate einzuführen.

2.3.2 Exponentialverteilung als Grenzwert der geometrischen Verteilung

Erinnerung: Die Poisson-Verteilung lässt sich als Grenzwert der Binomialverteilung darstellen.

Wir betrachten eine Folge geometrisch verteilter Zufallsvariablen X_n mit Parameter $p_n = \lambda/n$. Für ein beliebiges $k \in \mathbb{N}$ ist die Wahrscheinlichkeit, dass $X_n \leq k \cdot n$, gleich

$$\Pr[X_n \le kn] = \sum_{i=1}^{kn} (1 - p_n)^{i-1} \cdot p_n = p_n \cdot \sum_{i=0}^{kn-1} (1 - p_n)^i$$
$$= p_n \cdot \frac{1 - (1 - p_n)^{kn}}{p_n} = 1 - \left(1 - \frac{\lambda}{n}\right)^{kn}.$$

Wegen $\lim_{n\to\infty} (1-\frac{\lambda}{n})^n = e^{-\lambda}$ gilt daher für die Zufallsvariablen $Y_n := \frac{1}{n} X_n$, dass

$$\lim_{n \to \infty} \Pr[Y_n \le t] = \lim_{n \to \infty} \Pr[X_n \le t \cdot n]$$

$$= \lim_{n \to \infty} \left[1 - \left(1 - \frac{\lambda}{n} \right)^{tn} \right]$$

$$= 1 - e^{-\lambda t}.$$

Die Folge Y_n der (skalierten) geometrisch verteilten Zufallsvariablen geht also für $n \to \infty$ in eine exponentialverteilte Zufallsvariable mit Parameter λ über.

3. Mehrere kontinuierliche Zufallsvariablen

3.1 Mehrdimensionale Dichten

Beobachtung

Zu zwei kontinuierlichen Zufallsvariablen X, Y wird der zugrunde liegende gemeinsame Wahrscheinlichkeitsraum über \mathbb{R}^2 durch eine integrierbare (gemeinsame) Dichtefunktion $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}^+_0$ mit

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d} x \, \mathrm{d} y = 1$$

beschrieben. Für ein Ereignis $A\subseteq\mathbb{R}^2$ (das aus abzählbar vielen geschlossenen oder offenen Bereichen gebildet sein muss) gilt

$$\Pr[A] = \int_A f_{X,Y}(x,y) \,\mathrm{d}\, x \,\mathrm{d}\, y.$$

Unter einem Bereich B verstehen wir dabei Mengen der Art

$$B = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\} \quad \text{mit } a, b, c, d \in \mathbb{R}.$$

Dabei können die einzelnen Intervallgrenzen auch "offen" bzw. $\pm\infty$ sein.

Analog zum eindimensionalen Fall ordnen wir der Dichte $f_{X,Y}$ eine (gemeinsame) Verteilung $F_{X,Y}: \mathbb{R}^2 \to [0,1]$ zu:

$$F_{X,Y}(x,y) = \Pr[X \le x, Y \le y] = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) \,\mathrm{d} u \,\mathrm{d} v.$$