Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Harald Räcke Chris Pinkau

Parallel Algorithms

Due date: December 10th, 2013 before class!

Problem 1 (10 Points)

Define a bisection as a cut of a graph, i.e. a subset of nodes or edges, such that the graph is partitioned into two equally sized parts.

Given an *d*-dimensional hypercube, show that the removal of the nodes with size $\left\lfloor \frac{d}{2} \right\rfloor$ and size $\left\lfloor \frac{d}{2} \right\rfloor$ (i.e. nodes with that many 1s) results in a bisection containing $\Theta\left(\frac{2^d}{\sqrt{d}}\right)$ nodes.

Problem 2 (10 Points)

Let u and v be nodes of the d-dimensional hypercube, and let u_1, u_2, \ldots, u_d and v_1, v_2, \ldots, v_d denote their neighbors, respectively. Let π be any permutation on $\{1, 2, \ldots, d\}$. Show that there is an automorphism of the hypercube σ such that $\sigma(u) = v$ and $\sigma(u_i) = v_{\pi(i)}$ for $1 \leq i \leq d$.

Hint: An *automorphism* of a graph is a one-to-one mapping of the nodes to the nodes such that edges are mapped to edges.

Problem 3 (10 Points)

Prove that the *d*-dimensional wrapped butterfly is Hamiltonian for $d \ge 2$. *Hint*: You may try an induction on the dimension *d* of the network.