
4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with dlogne
colors.

Algorithm 9 BasicColoring

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: ki ← smallest bitpos where col(i) and col(S(i)) differ

4: col′(i)← 2k+ col(i)k

PA 4.6 Symmetry Breaking

© Harald Räcke 62/295



4.6 Symmetry Breaking

1
4

2

15

45

6

8

1
0

1
1

12

9

13
1

3

7

v col k col′

1 0001 1 2
3 0011 2 4
7 0111 0 1

14 1110 2 5
2 0010 0 0

15 1111 0 1
4 0100 0 0
5 0101 0 1
6 0110 1 3
8 1000 1 2

10 1010 0 0
11 1011 0 1
12 1100 0 0

9 1001 2 4
13 1101 2 5



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates

a coloring with largest color at most

2(t − 1)+ 1

and bit-length at most

dlog2(2(t − 1)+ 1)e ≤ dlog2(t − 1)e + 1 ≤ dlog2(t)e + 1

Applying the algorithm repeatedly generates a constant number

of colors after log∗n operations.

Note that the first inequality
holds because 2(t − 1)− 1 is
odd.

PA 4.6 Symmetry Breaking

© Harald Räcke 64/295



4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295



4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295



4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295



4.6 Symmetry Breaking

As long as the bit-length t ≥ 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with

colors in the range 0, . . . ,5 = 2t − 1.

We can improve to a 3-coloring by successively re-coloring nodes

from a color-class:

Algorithm 10 ReColor

1: for ` ← 5 to 3

2: for 1 ≤ i ≤ n pardo

3: if col(i) = ` then

4: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

This requires time O(1) and work O(n).

PA 4.6 Symmetry Breaking

© Harald Räcke 65/295



4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in O(log∗n)
time and with O(n log∗n) work.

not work optimal

PA 4.6 Symmetry Breaking

© Harald Räcke 66/295



4.6 Symmetry Breaking

Lemma 8

Given n integers in the range 0, . . . ,O(logn), there is an

algorithm that sorts these numbers in O(logn) time using a

linear number of operations.

Proof: Exercise!

PA 4.6 Symmetry Breaking

© Harald Räcke 67/295



4.6 Symmetry Breaking

Algorithm 11 OptColor

1: for 1 ≤ i ≤ n pardo

2: col(i)← i
3: apply BasicColoring once

4: sort vertices by colors

5: for ` = 2dlogne to 3 do

6: for all vertices i of color ` pardo

7: col(i)←min{{0,1,2} \ {col(P[i]), col(S[i])}}

PA 4.6 Symmetry Breaking

© Harald Räcke 68/295



Lemma 9

A ring can be colored with 3 colors in time O(logn) and with

work O(n).

work optimal but not too fast

PA 4.6 Symmetry Breaking

© Harald Räcke 69/295


