4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with [logn]
colors.

Algorithm 9 BasicColoring

1: for 1 <i <mn pardo

2 col(i) < i

3: ki — smallest bitpos where col(i) and col(S(i)) differ
4 col’ (i) < 2k + col(i)

‘m PA 4.6 Symmetry Breaking =)
©Harald Racke



4.6 Symmetry Breaking

v col col’
1 0001 1 2
3 0011 2 4
7 0111 0 1

14 1110 2 5
2 0010 0 0

15 1111 0 1
4 0100 0 0
5 0101 0 1
6 0110 1 3
8 1000 1 2

10 1010 0 0

11 1011 0 1

12 1100 0 0
9 1001 2 4

13 1101 2 5




4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most

2(t-1)+1

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most
2(t—1)+1

and bit-length at most

Mog,(2(t—1) + 1)]

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking
Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most
2(t-1)+1
and bit-length at most

[log,(2(t — 1) + 1)1 < [logy(t — 1)1+ 1

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking
Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most
2(t-1)+1
and bit-length at most

[log, 2(t —1) + 1)1 < [logo(t — 1)1+ 1 < [logx ()] + 1

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking
Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most
2(t-1)+1
and bit-length at most
[log,(2(t — 1)+ 1)] < [logr(t — 1)1+ 1 < [log,(£)]1+ 1

Applying the algorithm repeatedly generates a constant number
of colors after log™ n operations.

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking
As long as the bit-length t > 4 the bit-length decreases.

m PA 4.6 Symmetry Breaking
©Harald Racke



4.6 Symmetry Breaking
As long as the bit-length t > 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with
colors in the range 0,...,5 =2t — 1.

‘m PA 4.6 Symmetry Breaking =)
©Harald Racke



4.6 Symmetry Breaking

As long as the bit-length t > 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with
colors in the range 0,...,5 = 2t — 1.

We can improve to a 3-coloring by successively re-coloring nodes
from a color-class:

Algorithm 10 ReColor

1: for{ —5to3

2 for 1 <i < n pardo

3: if col(i) = ¢ then

4 col(i) —« min{{0, 1,2} \ {col(P[i]),col(S[i])}}

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking

As long as the bit-length t > 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with
colors in the range 0,...,5 = 2t — 1.

We can improve to a 3-coloring by successively re-coloring nodes
from a color-class:

Algorithm 10 ReColor

1: for{ —5to3

2 for 1 <i < n pardo

3: if col(i) = ¢ then

4 col(i) —« min{{0, 1,2} \ {col(P[i]),col(S[i])}}

This requires time @(1) and work O(n).

‘m PA 4.6 Symmetry Breaking =) =
©Harald Racke



4.6 Symmetry Breaking

Lemma 7
We can color vertices in a ring with three colors in O(log™ n)
time and with ©(nlog™ n) work.

not work optimal

m PA 4.6 Symmetry Breaking =)
©Harald Racke



4.6 Symmetry Breaking

Lemma 8

Given n integers in the range 0,...,O(logn), there is an
algorithm that sorts these numbers in O(logn) time using a
linear number of operations.

Proof: Exercise!

‘m PA 4.6 Symmetry Breaking =)
©Harald Racke



4.6 Symmetry Breaking

Algorithm 11 OptColor

: for 1 <i <n pardo
col(i) — i
apply BasicColoring once
sort vertices by colors
for £ = 2[logn] to 3 do
for all vertices i of color £ pardo

\lc\m-l;wr\.)—

col(i) — min{{0, 1,2} \ {col(P[i]),col(S[il)}}

T

PA 4.6 Symmetry Breaking &
©Harald Racke



Lemma 9
A ring can be colored with 3 colors in time O(logn) and with

work O(n).

work optimal but not too fast

m PA 4.6 Symmetry Breaking =)
©Harald Racke



