4.5 Inserting into a (2, 3)-tree

» Step 3, works in phases; one phase for every level of the tree

» Step 4, works in rounds; in each round a different set of
elements is inserted

Observation
We can start with phase i of round » as long as phase i of round
¥ — 1 and (of course), phase i — 1 of round 7 has finished.

This is called Pipelining. Using this technique we can perform all
rounds in Step 4 in just O(log k + log n) many parallel steps.

m PA 4.5 Inserting into a (2, 3)-tree
©Harald Racke

61

4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with [logn|
colors.

Algorithm 9 BasicColoring

1: for 1 <i <n pardo

2 col(i) — i

3: ki — smallest bitpos where col(i) and col(S(i)) differ
4 col’ (i) < 2k + col(i)

m PA 4.6 Symmetry Breaking
©Harald Ricke 62

4.6 Symmetry Breaking

/® @) v col k col’

1| 0001 1 2

/@ 3| 0011 2 4
() 7| o 0 1
14 | 1110 2 5

2 | o010 0 0

® 15 | 11 0 1
S 4| 0100 0 0

5 | o101 0 1

6| 0110 1 3

8 | 1000 1 2

10 | 1010 0 0

) 11 | 1011 0 1
12 | 1100 0 0

) ®/' 9 | 1001 2 4
E— 13 | 1101 2 5

4.6 Symmetry Breaking
Applying the algorithm to a coloring with bit-length t generates
a coloring with largest color at most
2(t-1)+1
and bit-length at most

[log, (2(t —1) + 1)1 < [logo(t — 1)1+ 1 < [log,(t)]+1

Applying the algorithm repeatedly generates a constant number
of colors after log* n operations.

: Note that the first inequality 1
1 holds because 2(t — 1) — 1 is :
1

m PA 4.6 Symmetry Breaking
©Harald Racke 64




4.6 Symmetry Breaking

As long as the bit-length t > 4 the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with
colors in the range 0,...,5 = 2t — 1.

We can improve to a 3-coloring by successively re-coloring nodes
from a color-class:

Algorithm 10 ReColor

1: for{ —5to3

2 for 1 <i < n pardo

3: if col(i) = ¥ then

4 col(i) — min{{0,1,2} \ {col(P[i]),col(S[i])}}

This requires time @(1) and work O(n).

m PA 4.6 Symmetry Breaking
©Harald Ricke 65

4.6 Symmetry Breaking

Lemma 7
We can color vertices in a ring with three colors in ©(log* n)
time and with O(nlog™ n) work.

not work optimal

m PA 4.6 Symmetry Breaking
©Harald Ricke 66

4.6 Symmetry Breaking

Lemma 8

Given n integers in the range O, ...,O(logn), there is an
algorithm that sorts these numbers in O(logn) time using a
linear number of operations.

Proof: Exercise!

m PA 4.6 Symmetry Breaking
©Harald Racke 67

4.6 Symmetry Breaking

Algorithm 11 OptColor
: for 1 <i <n pardo
col(i) — 1
apply BasicColoring once
sort vertices by colors
for £ = 2[logn] to 3 do
for all vertices i of color £ pardo
col(i) < min{{0,1,2} \ {col(P[i]),col(S[i])}}

N OO v AW N =

:We can perform Lines 6 and 7 in time O(ny) only because we sorted before. In general a state- :
: ment like “for constraint pardo” should only contain a contraint on the id’s of the processors :
1 but not something complicated (like the color) which has to be checked and, hence, induces
: work. Because of the sorting we can transform this complicated constraint into a constraint on :
| just the processor id’s.

m PA 4.6 Symmetry Breaking
©Harald Racke 68




Lemma 9
A ring can be colored with 3 colors in time O (logn) and with
work O(n).

work optimal but not too fast

m PA 4.6 Symmetry Breaking
©Harald Ricke

69




