
Parallel Prefix

Input: a linked list given by successor pointers; a value x[i] for

every list element; an operator ∗;

Output: for every list position ` the sum (w.r.t. ∗) of elements

after ` in the list (including `)

4 3 7 8 2 1 6 5

x[4] x[3] x[7] x[8] x[2] x[1] x[6] x[5]
S[4]=3 S[3]=7 S[7]=8 S[8]=2 S[2]=1 S[1]=6 S[6]=5 S[5]=5

PA 4.2 Parallel Prefix

© Harald Räcke 48/295



Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295



Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295



Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295



Parallel Prefix

Algorithm 7 ParallelPrefix

1: for 1 ≤ i ≤ n pardo

2: P[i]← S[i]
3: while S[i] ≠ S[S[i]] do

4: x[i]← x[i]∗ x[S[i]]
5: S[i]← S[S[i]]
6: if P[i] ≠ i then S[i]← x[S(i)]

The algorithm runs in time O(logn).

It has work requirement O(n logn). non-optimal

This technique is also known as pointer jumping

PA 4.2 Parallel Prefix

© Harald Räcke 49/295


